

Operation manual

VFD500 Series AC DRIVE

High Performance vector and torque

Preface

Thank you for purchasing the VFD500 series high performance vector and torque control frequency inverter

VFD500 series with advanced functions, such as high performance vector control of induction motor, user-programmable function and backstage monitoring software, variable communication and supporting multiple PG cards etc. It is applicable to textile, papermaking, tension control, wire drawing fans and pumps, machine tools, packaging, food and all kinds of automatic production equipment. Its excellent performance is equivalent and competitive to most of international brand AC drives

This manual introduces functional characteristics and usage of VFD500 series inverter, includes product model selection, parameter settings, running and debugging, maintenance, checking, and so on. Please be sure to read this manual carefully before operation. For equipment matching manufacturers, please send this manual to your end user together with your devices, in order to facilitate the usage.

PRECAUTIONS

- To describe the product details, the illustrations in the manual sometimes are under the state of removing the outer housing or security covering. While using the product, please be sure to mount the housing or covering as required, and operate in accordance with the contents of manual.
- The illustrations in this manual is only for explanation, may be different from the products you ordered.
- Committed to constantly improving the products and features will continue to upgrade, the information provided is subject to change without notice.
- Please contact with the regional agent or client service center directly of factory if there is any questions during usage.

EDIT:	V2.9
TIME:	2021-02

Contents

Chapter 1 Safety Information and Precautions	1
1.1 Safety Precautions	1
1.2 Precaution	2
Chapter 2 Product Information	4
2.1 Designation Rules	4
2.2product series instruction	4
2.3Technical Specifications	6
Chapter 3 Product appearance and Installation Dimension	9
3.1 Product appearance and installation	9
3.1.1Product appearance	9
3.1.2Appearance and Mounting Hole Dimension	. 12
3.1.3Removal and installation of cover and inlet plate	. 17
3.2Wiring	.19
3.2.1 Standard wiring diagram	. 20
3.2.2Main Circuit Terminals	. 21
3.2.3 Terminal screws and wiring specifications	. 22
3.2.4 Cautions for Main Circuit Wiring	. 24
3.2.4Control Circuit Terminal	. 25
3.3EMCquestion and solution	31
Chapter 4 Operation and display	. 33
4.1 LED Instruction of operation and display	33
4.2 Display hierarchy and menu mode	.34
4.3 Digital tube display	35
4.4 Test run	36
Chapter 5 Function Code Table	. 38
Chapter6 Fault Diagnosis and Solution	113
Chapter7 Selection Guide of inverter Accessory	120
7.1SelectionGuide of braking component	120
7.2PGcard type	121
7.3 Extension card	124
Chapter8 Daily maintenance of frequency inverters	128
8.1 Daily maintenance	128
8.1.1 Daily maintenance	128
8.1.2 Regular inspection	128
8.2 Wearing parts replacement	128
8.3Warranty Items	129
Appendix A Modbus communication protocol	130

Chapter 1 Safety Information and Precautions

Safety Definitions: In this manual, safety precautions are divided into the following two categories:

 $^{\prime\prime}$ indicates that failure to comply with the notice will result in serous injury or even death

 \mathbf{M} indicates that failure to comply with the notice will result in moderate or minor injury

andequipment damage

Read this manual carefully so that you have a thorough understanding. Installation, commissioning or maintenance may be performed in conjunction with this chapter. will assume no liability or responsibility for any injury or loss caused by improper operation.

1.1 Safety Precautions

Use stage	Security Level	Precautions
Before Installation		 packing water, parts missing or damaged parts, please do not install! Packaging logo and physical name does not match, please do not install! Handling should be light lift, otherwise there is the danger of damage to equipment! Do not use damaged drive or missing drive. Risk of injury! Do not touch the control system components by hand, or there is the danger of electrostatic damage!
		Please install the flame retardant objects such as metal, away from combustibles, or may cause a fire!
During Installation		 Do not allow lead wires or screws to fall into the drive, otherwise the drive may be damaged! Install the drive in a place where there is less vibration and direct sunlight. Drive placed in airtight cabinet or confined space, please note the installation of space to ensure the cooling effect.
		 You must follow the guidance of this manual and be used by qualified electrical engineers. Otherwise, unexpected danger may occur! There must be a circuit breaker between the drive and the power supply, otherwise a fire may occur! Make sure the power supply is in zero-energy state before wiring, otherwise there is danger of electric shock! Please follow the standard to the drive properly grounded, otherwise there is the risk of electric shock!
Wiring		 Never connect input power to the drive's output terminals (U, V, W). Note that the terminal markings, do not take the wrong line! Otherwise it will cause damage to the drive! Never connect the braking resistor directly to the DC bus +, - terminals. Otherwise it will cause a fire! Refer to the manual's recommendations for the wire diameter used. Otherwise it may happen accident! Do not disassemble the connecting cable inside the driver. Otherwise, the internal of the servo driver may be damaged.
Before Power-on		Make sure the voltage level of the input power is the same as the rated voltage of the driver. Check if the wiring position of the power input terminals (R, S, T) and output terminals (U, V, W) is correct; Of

Use stage	Security Level	Precautions
		the external circuit is short-circuited, the connection is tightened, or cause damage to the drive!
		> No part of the drive need to withstand voltage test, the product has been
		made before the test. Otherwise it may cause accident!
	۵	The driver must be covered before the cover can be powered, otherwise it may cause electric shock!
		> All peripheral accessories must be wired according to the instructions
	WARNING	in this manual, and be properly wired in accordance with this manual.
		Otherwise it may cause accident!
	•	Do not open the cover after power on, otherwise there is danger of electric shock!
	/{\	\succ If the indicator light does not light after power on, the keyboard does
		not display the situation, immediately disconnect the power switch, do
After Power-	DANGER	not touch any input and output terminals of the drive, otherwise there is
on		the risk of electric shock!
		If parameter identification is required, preclude the possibility of injury when rotating the motor!
		\succ Do not arbitrarily change the drive manufacturer parameters, or it may
	WARNING	cause damage to the device!
	A	Do not touch the cooling fan, radiator and discharge resistance to test the temperature, otherwise it may cause burns!
		 Non-professional technicians Do not detect the signal during operation,
During	DANGER	otherwise it may cause personal injury or equipment damage!
Operation	Δ	Drive operation, should avoid something falling into the device, attention it will avoid always to the device.
		 otherwise it will cause damage to the device! Do not use the contactor on-off method to control the start and stop
	WARNING	the drive, otherwise it will cause damage to the equipment!
		> Do not live on the equipment repair and maintenance, or there is a
		risk of electric shock!Turn off the input power for 10 minutes before performing
	A	maintenance and repair on the drive, otherwise the residual charge on
	/Ą	the capacitor will cause harm to people!
		Do not carry out maintenance and repair on the drive without personnel who have been professionally trained, otherwise personal
Maintenance	DANGER	injury or equipment damage will occur!
		> All pluggable plug-ins must be unplugged in the case of power failure!
		> The parameters must be set and checked after replacing the drive.
	 ∧	> Before performing maintenance work on the drive, make sure that the
		motor is disconnected from the drive to prevent the motor from feeding
	WARNING	back power to the drive due to accidental rotation.

1.2 Precaution

• Contactor using

If the contactor is installed on the power input side of the inverter, do not make the contactor frequent on-off operation. The interval between ON and OFF of the contactor should not be less than one hour. Frequent charging and discharging will reduce the use of capacitors in the inverter life.

If a contactor is installed between the inverter output terminals (U, V, W) and the motor, make sure that the inverter is turned on and off when there is no output. Otherwise, the inverter may be damaged.

• Lightning impulse protection

Although this series of inverters are equipped with lightning over-current protection device, there is a certain degree of self-protection for inductive lightning, but for lightning frequent place, customers should also install lightning protection device in the front of the inverter.

Altitude and derating use

In areas above 1000m above sea level, it is necessary to derate the inverter due to poor air quality due to poor air quality. In this case, please consult our company.

• Power input

The inverter power input should not exceed the operating voltage range specified in this manual. If necessary, use a step-up or step-down device to change the power supply to the specified voltage range.

Do not change the three-phase inverter to two-phase input, otherwise it will cause malfunction or inverter damage.

Output filtering

When the cable length between the inverter and the motor exceeds 100 meters, it is suggested to use the output AC reactor to avoid inverter over-current caused by excessive distributed capacitance. Output filter according to the needs of the field matching.

Inverter output is PWM wave, please do not install the capacitor on the output side to improve the power factor or lightning varistor, etc., otherwise it may easily lead to inverter instantaneous overcurrent or even damage the inverter.

• About motor heat and noise

Because the inverter output voltage is PWM wave, contains a certain degree of harmonics, so the motor temperature rise, noise and vibration compared with the same frequency operation will be slightly increased.

• Disposal

Electrolytic capacitors on the main circuit and electrolytic capacitors on the printed circuit board may explode when incinerated, and poisonous gases are generated when plastic parts are burned. Please dispose as industrial waste.

• The scope of application

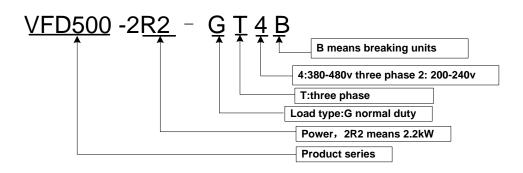
This product is not designed and manufactured for use on equipment where life is at stake. To use this

product on a mobile, medical, aerospace, nuclear or other special purpose device, please contact our company For more information.

This product is manufactured under strict quality control and should be equipped with a safety device if it is

used in a device that may cause a serious accident or damage due to inverter failure.

Chapter 2 Product Information


2.1 Designation Rules

Name plate:

TYPE →	MODEL: VFD500-2R2GT4B
POWER →	POWER: 2.2kW/4.0kW
INPUT →	INPUT: 3PH AC380~440V 50Hz/60Hz
OUTPUT →	OUTPUT: 3PH 0~440V 0~600Hz 5.6A/9.4A
CODE	S/N:

Model instruction:

2-2Model instruction

2.2Product series instruction

Table 2-1VFD500 inverter models and technical data

	Power	Input	Outpu	t current(A)	Adapta		
Model	capacity (KVA)	current (A)	Heavy load	Light load	ble Motor (KW)	SIZE	Brake Unit
	Th	ree phase:	380-480V,	50/60Hz	1	1	
VFD500-R75GT4B	1.5	3.4	2.5	4.2	0.75	-	
VFD500-1R5GT4B	3	5	4.2	5.6	1.5	SIZE A	
VFD500-2R2GT4B	4	5.8	5.6	9.4	2.2		Intern
VFD500-4R0G/5R5PT4B	5.9	10.5	9.4	13.0	3.7		al
VFD500-5R5G/7R5PT4B	8.9	14.6	13.0	17.0	5.5	-	
VFD500-7R5G/011PT4B	11	20.5	17.0	23.0	7.5	SIZE B	
VFD500-011G/015PT4B	17	26.0	25.0	31.0	11	0.75.0	
VFD500-015G/018PT4B	21	35.0	32.0	37.0	15	SIZE C	Intern
VFD500-018G/022PT4B	24	38.5	37.0	45.0	18.5	SIZE D	al
VFD500-022G/030PT4B	30	46.5	45.0	57.0	22	SIZE D	
VFD500-030G/037PT4	40	62.0	60.0	75.0	30	SIZE	
VFD500-037G/045PT4	50	76.0	75.0	87.0	37	E	
VFD500-045G/055PT4	60	92.0	90.0	110.0	45	SIZE F	optio n
VFD500-055G/075PT4	75	113.0	110.0	135.0	55	SIZE F	
VFD500-075G/090PT4	104	157.0	152.0	165.0	75	SIZE	
VFD500-090G/110PT4	112	170.0	176.0	210.0	90	G	
VFD500-110G/132PT4	145	220.0	210.0	253.0	110	SIZE H	
VFD500-132G/160PT4	170	258.0	253.0	304.0	132	SIZE I	
VFD500-160G/185PT4	210	320.0	304.0	360.0	160	5121	
VFD500-185G/200PT4	245	372.0	360.0	380.0	185	SIZE J	
VFD500-200G/220PT4	250	380.0	380.0	426.0	200	SIZE J	
VFD500-220G/250PT4	280	425.0	426.0	465.0	220		
VFD500-250G/280PT4	315	479.0	465.0	520.0	250	SIZE K	
VFD500-280G/315PT4	350	532.0	520.0	585.0	280	SIZE L	Exter
VFD500-315G/355PT4	385	585.0	585.0	650.0	315	SIZE E	nal
VFD500-355G/400PT4	420	638.0	650.0	725.0	355	SIZE M	
VFD500-400G/450PT4	470	714.0	725.0	820.0	400		
VFD500-450G/500PT4	530	800.0	820.0	/	450	SIZE N	
VFD500-500G/560PT4	580	880.0	900.0	/	500	JIZE IN	
VFD500-560G/630PT4	630	950.0	980.0	/	560	SIZE O	
VFD500-630GT4	710	1080	1120.	/	630	SIZE O	
VFD500-710GT4	790	1200	1260	/	710	SIZE O	

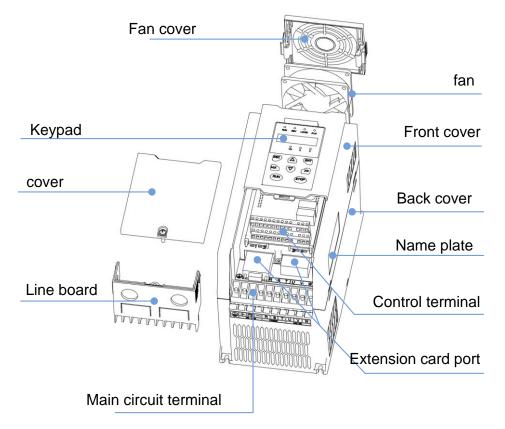
		Single phase	e :220V ,50/	/60HZ			
VFD500-R40GS2	1.3	6.0	3.2	5.6	0.4	SIZE A	
VFD500-R75GS2	2.4	11.0	5.6	8.0	0.75	SIZE A	
VFD500-1R5GS2	3.5	15.0	8.0	10.6	1.5	SIZE A	
VFD500-2R2GS2	5.5	25.0	10.6	14.0	2.2	SIZE A	Inbuil t
VFD500-4R0GS2	7.7	35.0	17.0	23.0	4.0	SIZE B	
VFD500-5R5GS2	8.9	53.0	25.0	31.0	5.5	SIZE C	
VFD500-7R5GS2	11	67.0	32.0	37.0	7.5	SIZE C	
		Three phas	e 220V ,50/	60HZ			
VFD500-R40GT2B	4	6.0	<mark>3.2</mark>	<mark>5.6</mark>	0.4	SIZE A	
VFD500-R75GT2B	4	11.0	<mark>5.6</mark>	<mark>8.0</mark>	0.75	SIZE A	
VFD500-1R5GT2B	<mark>3.5</mark>	<mark>15.0</mark>	<mark>8.0</mark>	<mark>10.6</mark>	1.5	SIZE A	
VFD500-2R2GT2B	<mark>5.5</mark>	25.0	<mark>10.6</mark>	<mark>14.0</mark>	2.2	SIZE A	Inbuil t
VFD500-4R0GT2B	11	<mark>35.0</mark>	<mark>17.0</mark>	23.0	4.0	SIZE B	
VFD500-5R5GT2B	17	<mark>53.0</mark>	<mark>25.0</mark>	<mark>31.0</mark>	<mark>5.5</mark>	SIZE C	
VFD500-7R5GT2B	<mark>21</mark>	<mark>67.0</mark>	<mark>32.0</mark>	<mark>37.0</mark>	<mark>7.5</mark>	SIZE C	
VFD500-011GT2B	<mark>30</mark>	<mark>46.5</mark>	<mark>45.0</mark>	1	11	SIZE D	Inbuil t
VFD500-015GT2	<mark>40</mark>	<mark>62.0</mark>	<mark>60.0</mark>	ł	15	SIZE E	Extern al
VFD500-018GT2	<mark>50</mark>	<mark>76.0</mark>	<mark>75.0</mark>	ł	18.5	SIZE E	Extern al
VFD500-022GT2	<mark>60</mark>	<mark>92.0</mark>	<mark>90.0</mark>	ł	22	SIZE F	Extern al
VFD500-030GT2	<mark>75</mark>	<mark>113.0</mark>	<mark>110.0</mark>	ł	<mark>30</mark>	SIZE F	Extern al
VFD500-037GT2	<mark>104</mark>	<mark>157.0</mark>	<mark>152.0</mark>	1	37	SIZE G	Extern al
VFD500-045GT2	<mark>112</mark>	170.0	<mark>176.0</mark>	1	<mark>45</mark>	SIZE G	Extern al
VFD500-055GT2	<mark>145</mark>	<mark>220.0</mark>	<mark>210.0</mark>	ł	<mark>55</mark>	SIZE H	Extern al
VFD500-075GT2	<mark>145</mark>	<mark>320.0</mark>	<mark>304.0</mark>	1	75	SIZE I	Extern al
Description:		•					

Description:

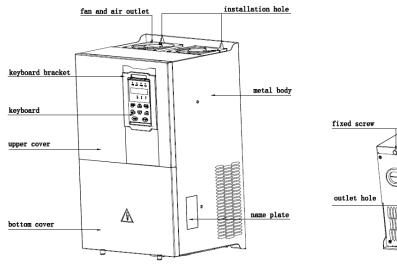
* The built-in brake unit of this model is optional. Take 30kW as an example. The model without brake unit is VFD500-030G/037PT4, and the model with brake unit is VFD500-030G/037PT4B

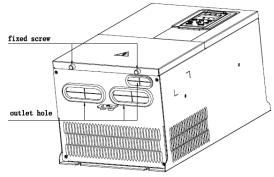
2.3Technical Specifications

Table 2-2 VFD500 Technical Specifications

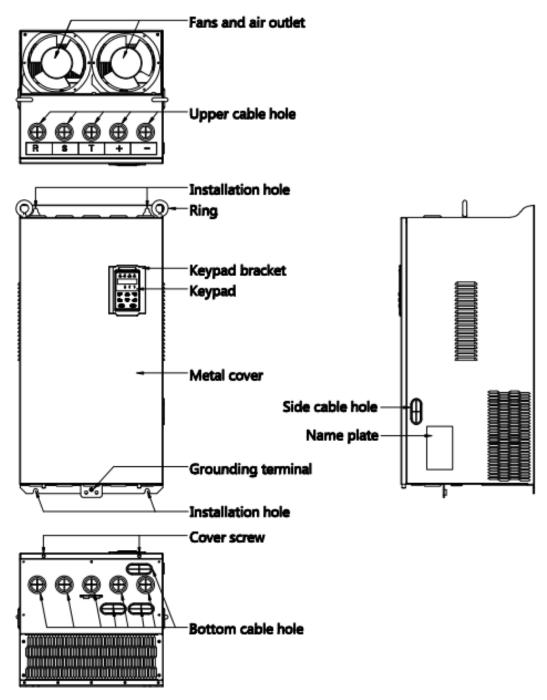

	ltem	Specifiation
	Inuput Voltage	1phase/3phase 220V: 200V~240V 3 phase 380V-480V: 380V~480V
Input	Allowed Voltage fluctuation range	-15%~10%
	Input frequency	50Hz / 60Hz,fluctuation less than 5%
	Output Voltage	3phase: 0 \sim input voltage
Output	Overload capacity	General purpose application:60S for 150% of the rated current Light load application:60S for 120% of the rated current
	Control mode	V/f control Sensorless flux vector control without PG card(SVC) Sensor speed flux vector control with PG card (VC)
	Operating mode	Speed control、Torque control(SVC and VC)
	Speed range	1:100 (V/f) 1:200(SVC) 1:1000 (VC)
	Speed control accuracy	±0.5% (V/f) ±0.2% (SVC) ±0.02% (VC)
	Speed response	5Hz(V/f) 20Hz(SVC) 50Hz(VC)
	frequency range	0.00~600.00Hz(V/f) 0.00~200.00Hz(SVC) 0.00~400.00Hz(VC)
	Input frequency resolution	Digital setting: 0.01 Hz Analog setting: maximum frequency x 0.1%
Control	Startup torque	150%/0.5Hz(V/f) 180%/0.25Hz(SVC) 200%/0Hz(VC)
	Torque control accuracy	SVC: within 5Hz10%,above 5Hz5% VC:3.0%
	V/f curve	V / f curve type: straight line, multipoint, power function, V / f separation; Torque boost support: Automatic torque boost (factory setting), manual torque boost
	Frequency giving ramp	60000s
	DC bus voltage control	Overvoltage stall control: limit the power generation of the motor by adjusting the output frequency to avoid skipping the voltage fault; Undervoltage stall control: control the power consumption of the motor by adjusting the output frequency to avoid yaw failure VdcMax Control: Limit the amount of power generated by the motor by adjusting the output frequency to avoid over-voltage trip;
		VdcMin control: Control the power consumption of the motor by adjusting the output frequency, to avoid jump undervoltage fault
	Carrier frequency	1kHz \sim 12kHz(Varies depending on the type)

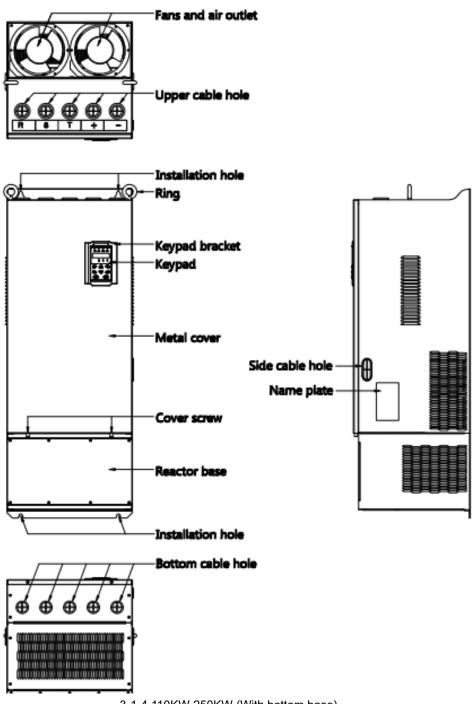
	Direct start (can be superimposed DC brake); speed tracking start
	Deceleration stop (can be superimposed DC braking); free to stop
Maincontrol function	Jog control, droop control, up to 16-speed operation, dangerous speed avoidance, swing frequency operation, acceleration and deceleration time switching, VF separation, over excitation braking, process PID control, sleep and wake-up function, built-in simple PLC logic, virtual Input and output terminals, built-in delay unit, built-in comparison unit and logic unit, parameter backup and recovery, perfect fault record,fault reset, two groups of motor parametersfreeswitching, software swap output wiring, terminals UP / DOWN
Keypad	LED Digital keyboard and LCD keypad(option)
Communication	Standard: MODBUS communication CAN OPEN AND PROFINET(IN DEVELOPMENT)
PG card	Incremental Encoder Interface Card (Differential Output and Open Collector), Rotary Card ,frequency division signal pg card
Input terminal	Standard: 5 digital input terminals, one of which supports high-speed pulse input up to 50kHz; 2 analog input terminals, support 0 ~ 10V voltage input or 0 ~ 20mA current input; Option card: 4 digital input terminals 2 analog input terminals.support-10V-+10V voltage input
Output terminal	 standard: 1 digital output terminal; 1 high-speed pulse output terminal (open collector type), support 0 ~ 50kHz square wave signal output; 1 relay output terminal(second relay is an option) 2 analog output terminals, support 0 ~ 20mA current output or 0 ~ 10V voltage output; Option card: 4 digital output terminals
Refer to Chapter 6	Troubleshooting and Countermeasures" for the protection function
Installation location	Indoor, no direct sunlight, dust, corrosive gas, combustible gas, oil smoke, vapor, drip or salt.
Altitude	0-3000m inverter will be derated if altitude higher than1000m and rated output current will reduce by 1% if altitude increase by 100m
Ambient temperature	-10°C~ +40°C,maximum 50°C (derated if the ambient temperature is between 40°C and 50°C)Rated output current decrease by 1.5% if temperature increase by 1°C
Humidity	Less than 95%RH, without condensing
Vibration	Less than 5.9 m/s ² (0.6 g)
Storage temperature	-20°C ~ +60°C
Installation	Wall-mounted, floor-controlled cabinet, transmural
Protection level	IP20
cooling method	Forced air cooling
CE ROHS	Internal EMC filter Complies with EN61800-3 Category C3 3 rd Environment
	Maincontrol function Keypad Communication PG card Input terminal Output terminal Output terminal Output terminal Refer to Chapter 6 Installation location Altitude Ambient temperature Humidity Vibration Storage temperature Installation Protection level cooling method

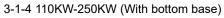

Chapter 3 Product appearance and Installation Dimension

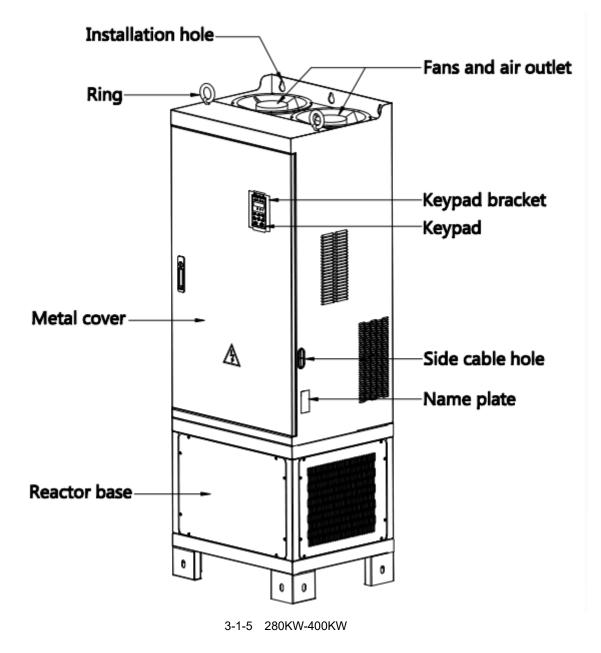

3.1 Product appearance and installation

3.1.1Product appearance

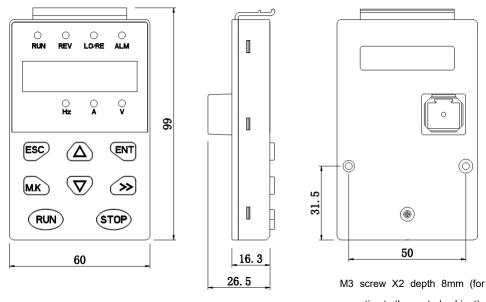







3-1-2 18.5kw-90kw

3-1-3 110kw-250kw



3.1.2 Appearance and Mounting Hole Dimension

Keypay and keypad support size

The dimensions of the VFD500 series keypad are shown in Figure 3-1. When installing the keypad on the outside of the control cabinet, use the two screws on the back of the keypad to fix it (right side of Figure 3-1).

mounting to the control cabinet)

Diagram 3-2 Keypad dimension

If you want to mount keyboard on control cabinet (to prevent the keypad from protruding toward the outside of the control cabinet), use a keypad Bracket. The dimensions of the keypadbracket are shown in Figure 3-2. The dimensions of the mounting diagram and control cabinet are shown in Figure 3-3.

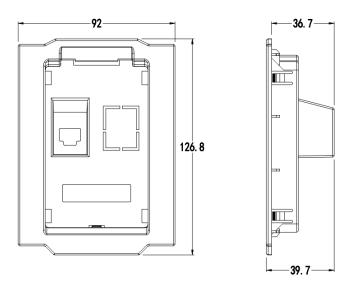


Figure 3-3 Keypad Holder Size (Unit: mm)

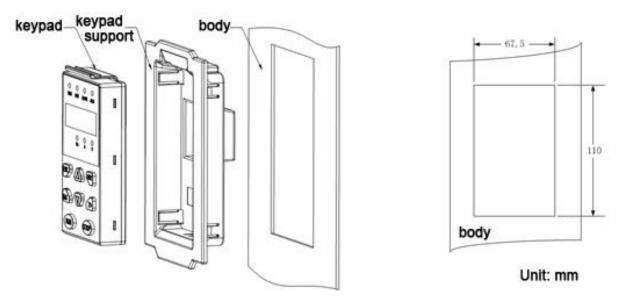


Figure 3-4 Keypad support installation diagram and control cabinet processing dimensions

Inverter dimensions and installation dimensions

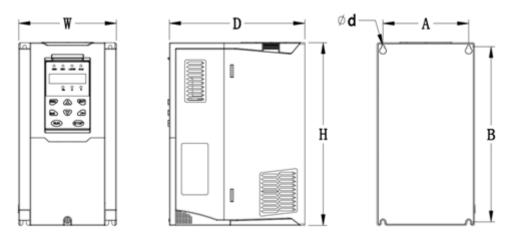


Figure 3-5 SIZE A to SIZE C(0.75KW-15KW) Dimension

Figure 3-6 SIZE D~G(18.5KW-90KW) Dimension

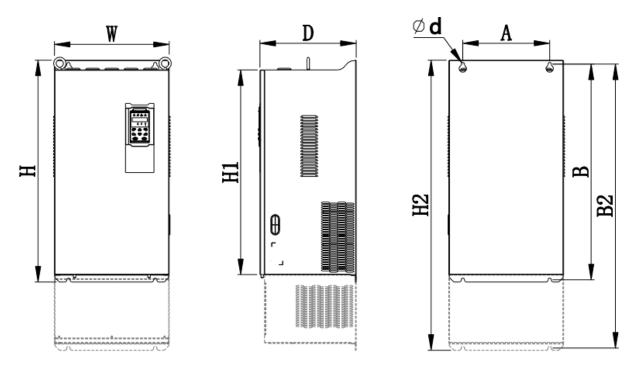


Figure 3-7 SIZE H~J(110KW-250KW) Dimension Note: SIZE H~SIZE J (110kw-200kw) standard model without reactor and bottom base Reactor and bottom base for option

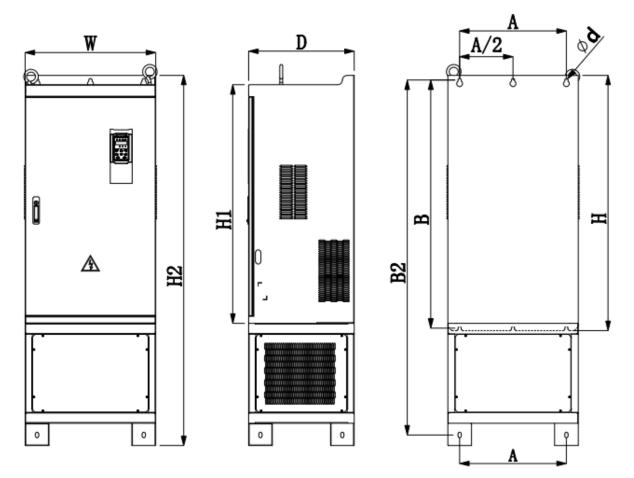


Figure 3-8 SIZE K~J(280KW-315KW) Dimension

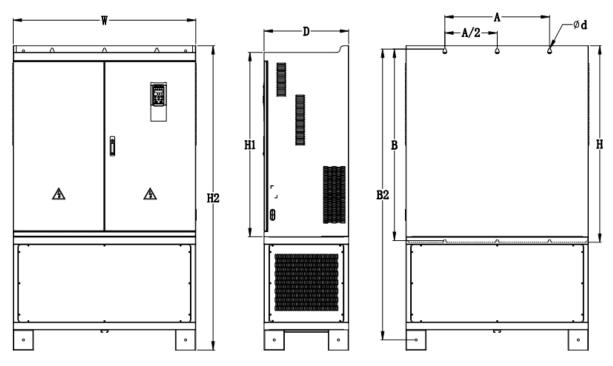
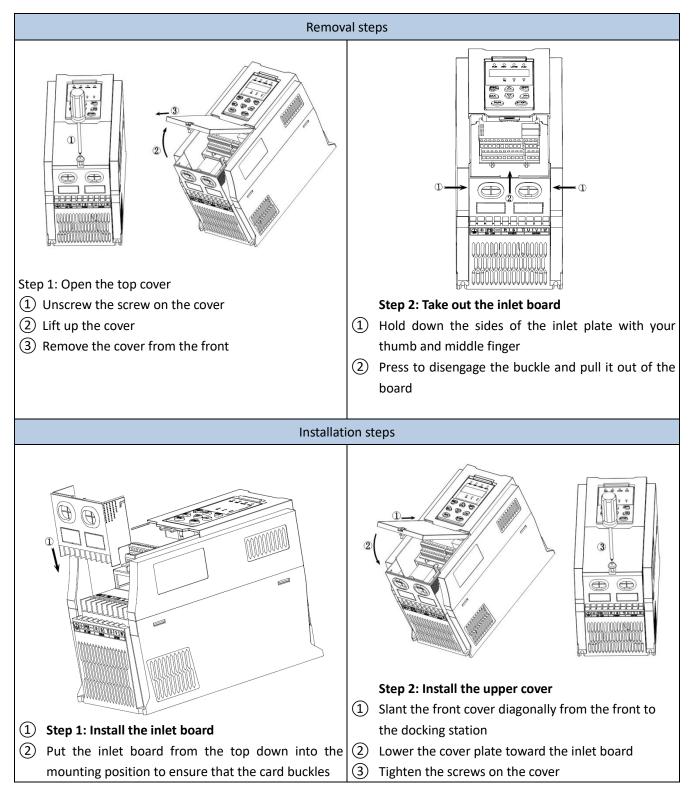
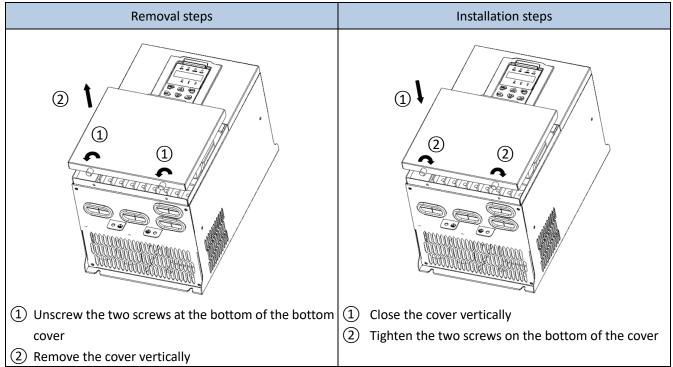


Figure 3-9 SIZE K~O(315KW-710KW) Dimensions

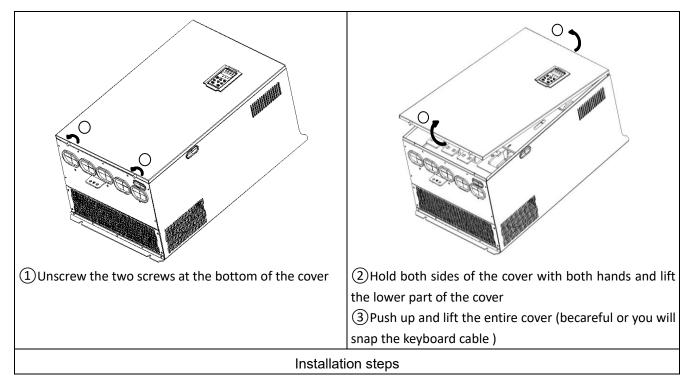
				Appearance and installation dimension (mm)						
SIZE	A	В	B2	н	H1	H2	w	D	Φd	Mounting screws
0.75KW-4KW	87	206.5	/	215	/	/	100	170	ø5.0	M4X16
5.5KW-7.5KW	113	239.5	/	250	/	/	130	180	ø5.0	M4X16
11KW-15KW	153	299	/	310	/	/	170	193	Ø6.0	M5X16
18.5KW-22KW	165	350	/	370	335	/	210	205	Ø6.0	M5X16
30KW-37KW	218	438	/	452. 5	424	/	260	230	Ø7.0	M6X16
45KW-55KW	250	535	/	555	520	/	320	275	Ø10.0	M8X20
75KW-90KW	280	620	/	640	605	/	350	290	Ø10.0	M8X20
110KW	280	695	915	715	660	935	370	313	Ø11.0	M8X25
132KW-160KW	280	705	925	725	670	945	360	338	Ø11.0	M8X25
185KW-200KW	360	795	1145	816	762	1166	490	358	Ø11.0	M10X25
220KW-250KW	360	795	1145	816	762	1166	490	358	Ø11.0	M10X25
280KW-315KW	450	1045	1495	1075	1005	1560	550	450	Ø13.0	M12X30
355KW-400KW	630	1013	1425	104 5	970	1495	730	450	Ø13	M12×30
450KW-500KW	<mark>660</mark>	<mark>1065</mark>	1	<mark>1575</mark>	<mark>1095</mark>	/	<mark>785</mark>	<mark>450</mark>	<mark>Ø13</mark>	M12×30
560KW-710KW	<mark>620</mark>	<mark>1130</mark>	l	<mark>1800</mark>	<mark>1170</mark>	1	<mark>1080</mark>	<mark>500</mark>	<mark>Ø13</mark>	M12×30

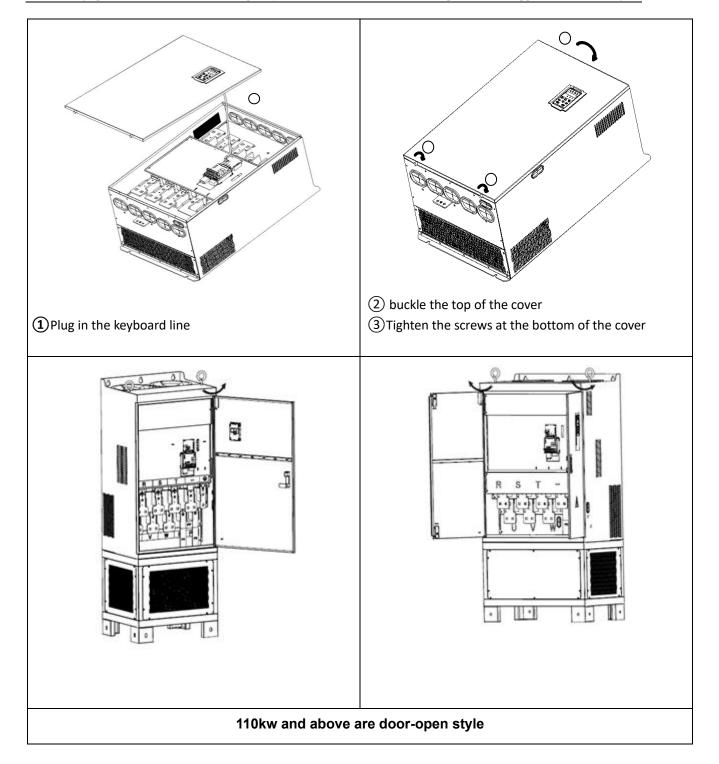

T 1 1 0 4	
Table 3-1	VFD500 series appearance and installation dimension

Remarks:


- (1) B2 and H2 are the installation dimensions when the reactor base is included.
- (2) Φd is the diameter of the installation screw hole of the whole machine.

3.1.3 Removal and installation of cover and inlet plate


◆ SIZEA∼SIZE C(0.75KW-15KW) Removal and installation of cover and inlet plate:



SIZE D-G(18.5KW-90KW) Removal and installation of cover:

\clubsuit SIZEH \sim SIZE I(110KW-160KW) Removal and installation of cover

3.2Wiring

3.2.1 Standard wiring diagram

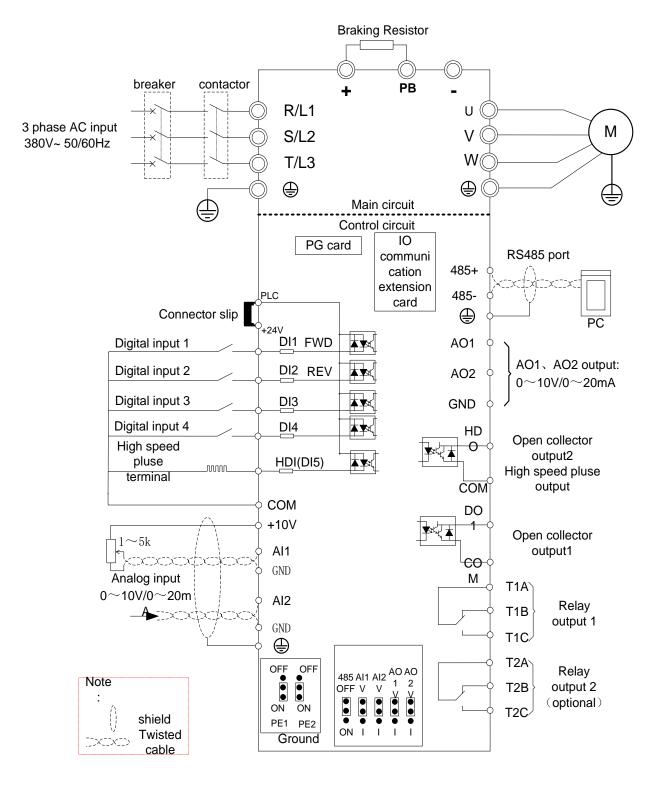


Diagram 3-10standard wiring

3.2.2Main Circuit Terminals

\bigcirc									$\left(\begin{array}{c} \\ \\ \\ \end{array} \right)$
	+	PB	_	R	S	Т	U	V	W
	-	DC-LINK			POWER			MOTOR	

Figure 3-11 SIZE A~SIZE C(0.75kw-15kw) Main Circuit Terminal

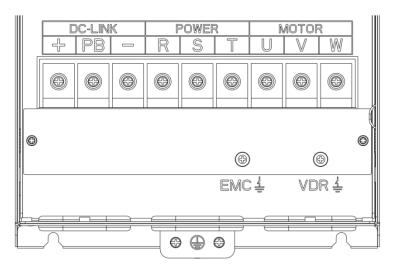


Figure 3-12 SIZE D 18.5kw-22kw main circuit terminal block diagram

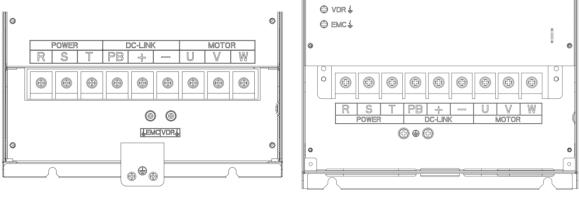


Figure 3-13 SIZE E 30kw-37kw(LEFT)

Figure 3-14 SIZE F~G45kw-90kw(RIGHT)

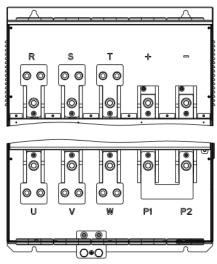


Figure 3-15 110kw-250kw Main Circuit Terminal Blocks

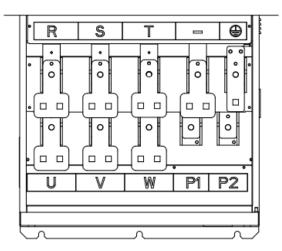


Figure 3-16 280kw-400kw Main Circuit Terminal Blocks

Table 3-17 Function description of the main circuit terminal of the inverter

Terminal	Function instruction		
R、S、T	R, S, T AC power input terminal, connect three-phase AC power		
U、V、W	Inverter AC output terminal, connect three-phase AC motor		
+、-	The positive and negative terminals of the internal DC bus are connected to the		
	external brake unit or For common DC bus		
P1、P2	P1 and P2 are terminal to Connect DC reactor, short P1 to P2 when DC reactor		
	is not used (P2 is equivalent to "+" of DC bus)		
+、РВ	Braking resistor connection terminal when built-in brake unit		
Ð	Ground terminal, ground		
EMC、VDR	Safety capacitor and varistor grounding selection screw (SIZE A~SIZE C EMC		
	screw on the left side of the fuselage)		

3.2.3 Terminal screws and wiring specifications

Table 3-18 Main circuit cable and screw specifications

Chapter3 Product appearance and wiring

	Power terminal				Ground term	inal
Model number	Screw	Tightening torque (N·m)	Cable diameter (mm²)	screw	Tightening torque (N·m)	Cable diameter (mm²)
VFD500-R75GT4B	М3	1.5	2.5	M3	1.5	2.5
VFD500-1R5GT4B	M3	1.5	2.5	M3	1.5	2.5
VFD500-2R2GT4B	M3	1.5	2.5	M3	1.5	2.5
VFD500-4R0G/5R5PT4B	М3	1.5	4	M3	1.5	4
VFD500-5R5G/7R5PT4B	M4	2	6	M4	2	6
VFD500-7R5G/011PT4B	M4	2	6	M4	2	6
VFD500-011G/015PT4B	M5	4	10	M5	4	10
VFD500-015G/018PT4B	M5	4	10	M5	4	10
VFD500-018G/022PT4B	M6	4	10	M6	4	10
VFD500-022G/030PT4B	M6	4	16	M6	4	16
VFD500-030G/037PT4	M8	10	16	M6	5	10
VFD500-037G/045PT4	M8	10	16	M6	5	10
VFD500-045G/055PT4	M8	10	25	M6	5	16
VFD500-055G/075PT4	M8	10	35	M6	5	16
VFD500-075G/090PT4	M10	20	50	M8	8	25
VFD500-090G/110PT4	M10	20	70	M8	8	35
VFD500-110G/132PT4	M10	20	120	M8	10	70
VFD500-132G/160PT4	M12	35	150	M8	10	70
VFD500-160G/185PT4	M12	35	185	M8	10	70
VFD500-185G/200PT4	M12	35	95*2	M10	15	95
VFD500-200G/220PT4	M12	35	95*2	M10	15	95
VFD500-220G/250PT4	M12	35	120*2	M10	15	120
VFD500-250G/280PT4	M12	35	120*2	M10	15	120
VFD500-280G/315PT4	M12	35	150×2	M12	15	120
VFD500-315G/355PT4	M12	35	150×2	M12	15	150
VFD500-355G/400PT4	M12	35	150×2	M12	15	150
VFD500-400G/450PT4	M12	35	185×2	M12	15	185
VFD500-450G/500PT4	<mark>M12</mark>	<mark>35</mark>	<mark>240×2</mark>	<mark>M12</mark>	<mark>15</mark>	<mark>240</mark>
VFD500-500G/560PT4	<mark>M12</mark>	<mark>35</mark>	<mark>240×2</mark>	<mark>M12</mark>	<mark>15</mark>	<mark>240</mark>
VFD500-560G/630PT4	M12	<mark>35</mark>	<mark>185×3</mark>	<mark>M12</mark>	<mark>15</mark>	<mark>185</mark>
VFD500-630GT4	<mark>M12</mark>	<mark>35</mark>	<mark>240×3</mark>	<mark>M12</mark>	<mark>15</mark>	<mark>240</mark>
VFD500-710GT4	M12	<mark>35</mark>	<mark>240×3</mark>	M12	<mark>15</mark>	<mark>240</mark>

3.2.4 Cautions for Main Circuit Wiring

(1) **Power Supply Wiring**

• It is forbidden to connect the power cable to the output terminal of the inverter. Otherwise, the internal components of the inverter will be damaged.

• In order to provide input side overcurrent protection and power outage overhaul convenience, the inverter should be connected to the power supply through circuit breakers and contactors.

• Please confirm the power phase, the voltage is consistent with the product nameplate, do not match may result in damage to the inverter.

(2) DC wiring

◆ Do not connect the braking resistor directly to +, -, which may cause the inverter to be damaged or even fire.

◆ When using the external brake unit, pay attention to +, - can not be reversed, otherwise it will cause damage to the inverter and brake unit or even cause a fire.

(3) Motor Wiring

- ◆ It is forbidden to short circuit or ground the inverter output terminal, otherwise the internal components of the inverter will be damaged.
- Avoid short circuit the output cables or with the inverter enclosure, otherwise there exists the danger of electric shock.
- ♦ It is forbidden to connect the output terminal of the inverter to the capacitor or LC/RC noise filter with phase lead, otherwise, the internal components of the inverter may be damaged.
- ♦ When contactor is installed between the inverter and the motor, it is forbidden to switch on/off the contactor during the running of the inverter, otherwise, there will be large current flowing into the inverter, triggering the inverter protection action.
- ◆Length of cable between the inverter and motor

If the cable between the inverter and the motor is too long, the higher harmonic leakage current of the output end will produce by adverse impact on the inverter and the peripheral devices. It is suggested that when the motor cable is longer than 100m, output AC reactor be installed. Refer to the following table for the carrier frequency setting.

3.2.4Control Circuit Terminal

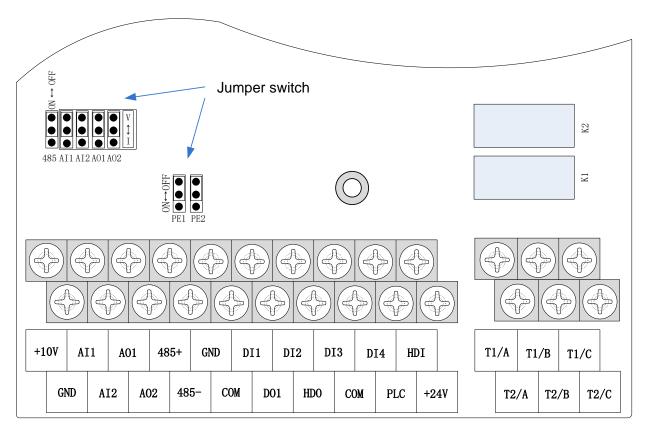


Diagram 3-19 VFD500 control circuit terminal

Terminal Terminal Terminal function description Type Symbol Name 10.10V±1% Maximum output current:10mA, it provides power +10V Input voltage supply to external potentiometer with resistance range of: 1KΩ~51KΩ Ananog GND Internal isolation from COM ground Input voltage:0~10V: Impedance 22KΩ, Maximum input voltage Analog input Input current:0~20mA: Impedance 500Ω, Maximum AI1 Analog input1 voltage input current Through the jumper switch AI1 0 \sim 10V and 0 \sim 20mA analog input switch, the factory default voltage input. Input voltage:0~10V: Impedance 22KΩ, Maximum input voltage Analog input Input current:0~20mA: Impedance 500Ω, Maximum AI2 2 input current Through the jumper switch AI1 0 ~ 10V and 0 ~ 20mA analog input switch, the factory default voltage input. Output voltage:0~10V: Impedance ≥10KΩ Output current:0~20mA: Impedance 200Ω~500Ω Analog output AO1 Through the jumper switch AO1 0 ~ 10V and 0 ~ 20mA 1 analog output switching, the factory default voltage output. Output voltage:0~10V: Impedance ≥10KΩ Analog input Output current:0~20mA: Impedance 200Ω~500Ω Analog output AO2 Through the jumper switch AO1 0 ~ 10V and 0 ~ 20mA 2 analog output switching, the factory default voltage output. Ananog GND Internal isolation from COM ground 24V±10%, Internal isolation from GND Maximum output current: 200mA +24V +24V current To provide 24V power supply, generally used as a digital input and output terminal power supply and external sensor power The factory default setting is connected PLC with +24V Digital input Terminal for on-off input high and low level switch PLC Switch input terminal When using the external signal to drive DI1~DI5, it common will disconnect the connector slip of PLC with the +24V COM +24V ground Internal isolation from GND Optocoupler isolation, compatible with bipolar input Digital input DI1~DI4 Frequency range: 0~200Hz terminal 1~4 Voltage range: 10V~30V HDI Digital input terminal: same as DI1~DI4 **Digital input**

Table 3-20 VFD500 control circuit terminal instruction

Туре	Terminal Symbol	Terminal Name	Terminal function description		
		terminal	Pulse input frequency input: 0~50KHz		
		/High-speed pulse input	Voltage range: 10V~30V		
		Open	Optocoupler isolation		
	DO1	collector	Voltage range: 0V~24V		
		output	Current range: 0mA ~50mA		
Switch		Open	Open collector output: same as DO1		
output	HDO	collector output /High- speed pulse output	High-speed pulse output: 0~50KHz		
Delay autaut	T1A/T1B/T1 C	Relay output	T1A-T1B: nomal close		
Relay output 1			T1A-T1C: nomal open		
I			Contact rating: AC 250V, 3A; DC 30V, 1A		
Relay			T2A-T2B: nomal close		
output2			T2A-T2C: nomal open		
(optional)			Contact rating: AC 250V, 3A; DC 30V, 1A		
485 port	485+	485 Positive differential signal	Baud rate:		
	485 Negative 485- differential signal		1200/2400/4800/9600/19200/38400/57600/115200bps		

Table 3-21 Functional Description of VFD500 Jumper Switch

Name	Function		
485	485 Termination resistor selection: ON has 100 ohm terminating		
	resistor, OFF is no terminating resistor		
Al1	Al1 analog type selection: V is the voltage input (0 \sim 10V), I is the	V	
	current input (0 ~ 20mA)		
Al2	Al2 analog type selection: V is the voltage input (0 \sim 10V), I is the	V	
	current input (0 ~ 20mA)		
AO1	AO1 analog type selection: V is the voltage output (0 ~ 10V), I is the	V	
	current output (0 ~ 20mA)		
AO2	AO2 analog type selection: V is the voltage output (0 ~ 10V), I is the	V	
	current output (0 ~ 20mA)		
PE1	GND ground selection: ON is grounded through the safety capacitor,	OFF	
	OFF is not connected		
PE2	COM ground selection: ON is grounded through the safety capacitor,	OFF	
	OFF is not connected		

♦ Analog input terminal instructions

The AI1 and AI2 terminals can accept both analog voltage input and analog current input. They can be switched by jumpers "AI1" and "AI2" on the IO board. The connection method and jumper

switch configuration are shown in the following figure:

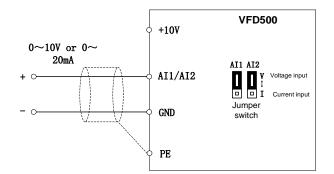
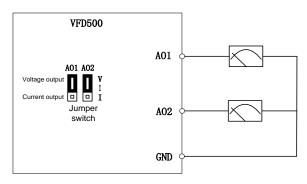
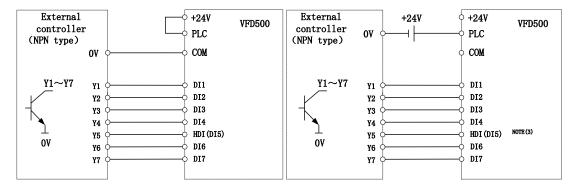
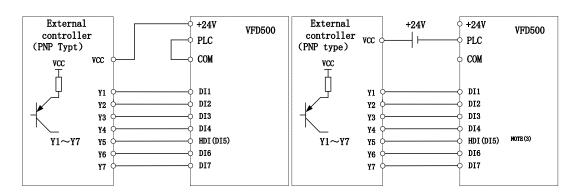


Figure 3-22 Analog input terminal wiring diagram

The AO1 and AO2 terminals support the voltage output (0~10V) and the current output (0~20mA). They are selected by jumpers "AO1" and "AO2" on the IO board. The connection method is as shown in the figure below:


Figure 3-23 Analog output terminal wiring diagram

Digital input terminal instructions

A: By internal 24V with NPN mode

B: By internal 24V with PNP mode

C: NPN mode uses external +24V power supply

D: PNP mode uses external +24V power supply

3-24 Switching Digital input terminal wiring diagram

Note:

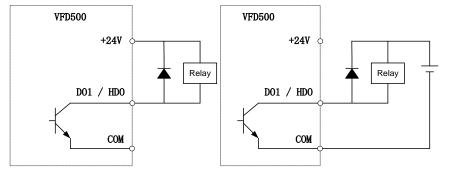
1. If the output of the external controller is a relay contact, it can be regarded as an NPN or PNP type. The

"0V" or "VCC" of the external controller in the above figure can be regarded as the common terminal of the

relay.

2. When using an external power supply, the shorting link between +24V and PLC must be removed,

otherwise the product will be damaged!


3. When using an external power supply, when using HDI, connect the negative pole of the external power

supply to COM, otherwise HDI will be invalid!

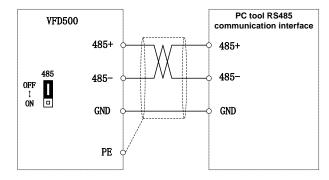
4. The voltage range of VCC is 10V~30V.

♦Switch output terminal instructions

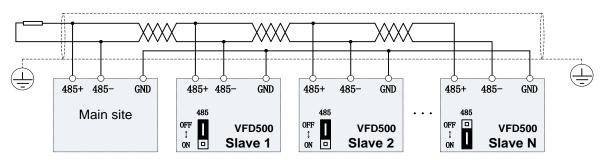
The multi-function output terminals DO1 and HDO can be powered by the internal +24V power supply of the inverter or an external power supply. The wiring diagram is as follows:

A、 Use internal power supply

B、 Use external power supply


3-25 Switching digital output terminal wiring diagram

Note:


The multi-function terminal output is an open collector output with a maximum allowable current of 50mA. When using the internal power supply, if the inductive load is driven, an absorption circuit such as an RC snubber circuit or a freewheeling diode should be installed. When adding a freewheeling diode, be sure to confirm the polarity of the diode, otherwise the product will be damaged. For external power supply, connect the negative terminal of the

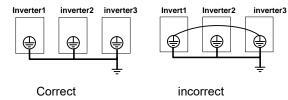
external power supply to the COM terminal.

♦ 485Communication terminal instructions

3-26 Single inverter RS485 directly communicates with the host computer

3-16Multiple inverter RS485 is connected to the host computer for communication

3.3 EMCquestion and solution


The working principle of the inverter determines that it will certainly produce electromagnetic interference, affecting and interfering with other equipment. In the meantime, the frequency converter usually works under the industrial environment with very strong noise, its internal weak signal is also easily disturbed. For safe and trouble-free operation of the frequency converter, as well as the normal and orderly operation of other equipment, install the equipment according to the following rules.

- Install the input noise filter, the filter to the inverter input power supply side of the wiring should be as short as possible.
- Filter shell and the installation of the cabinet should be a large area of reliable connection, in order to reduce the noise current loop impedance.
- The wiring distance between inverter and motor should be as short as possible. The motor cable adopts 4-core cable. One end of the ground wire is grounded at the inverter side and the other end is connected with the motor case. The motor cable is sheathed into the metal pipe.
- > Input power line and output motor line should be far away from each other.
- > Easily affected equipment and signal lines should be installed away from the inverter.
- The key signal cable should use shielded cable. It is suggested that the shielded cable layer should be grounded by 360 degree grounding method and set in the metal pipe. As far as possible from the inverter input power cable and output motor cable, if the signal cable must cross the input power cable or output motor cable, the two should be orthogonal.
- When using the analog voltage and current signals for remote frequency setting, double-stranded, shielded and shielded cables should be used, and the shield should be connected to the grounding terminal PE of the inverter. The longest signal cable should not exceed 50 meters.
- The control circuit terminals T1A / T1B / T1C, T2A / T2B / T2C and other control circuit terminals should be separated wiring.
- > It is forbidden to short-circuit the shield with other signal lines and equipment.
- When connecting the inductive load device (magnetic contactor, relay, solenoid valve, etc.) to the inverter, be sure to use the surge suppressor on the load device coil.
- Correct and reliable grounding is safe and reliable operation of the foundation:

(1) Inverter will generate leakage current, the greater the carrier frequency, the greater the leakage current. Inverter leakage current greater than 3.5mA, the size of the leakage current by the conditions of use, in order to ensure safety, inverter and motor must be grounded;

(2) Grounding resistance should be less than 10 ohms. Grounding cable diameter requirement, refer to the same type of input and output cables half of the cross-sectional area selection;

- (3) Do not share the ground wire with welding machines and other power equipment;
- (4) When using more than two inverters, do not make the ground wire loop..

3-27-1 Ground wire connection diagram

Frequency converter to motor cable length and carrier frequency to maintain the appropriate relationship

When the cable between the inverter and the motor is long, due to the influence of distributed capacitance, it is easy to produce electrical resonance, thus generating a large current so that the inverter over-current protection. It

is recommended to install the AC output reactor when the motor cable length exceeds 100 meters. Refer to the following table for carrier frequency setting

Inverter output cable length and carrier frequency table

3-27-2 diagram				
Cable length between drive	20m below	50m below	100m below	100m above
and motor				
Carrier frequency	15kHz below	8kHz below	4kHz below	2kHzbelow
(P22.00)				

3-27-2 diagram

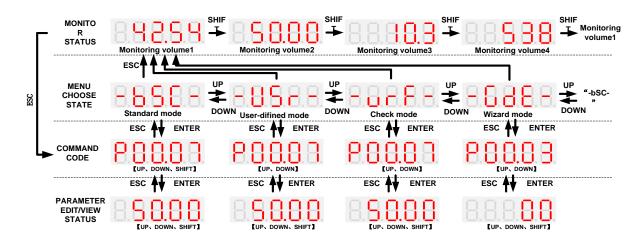
Chapter 4 Operation and display

4.1 LED Instruction of operation and display

LED keyboard consists of 5 digital tubes, 7 lights, 8 keys and a potentiometer; can be used to set the parameters, status monitoring and operation control, LED keyboard shape as shown in Figure 4-1:

Figure 4-1 Operating panel

Description of indicator


Table 4-1 The name and function of each part of the keyboard

No.	Part	Name	me Function		
1	ESC	Exit • exit menu level			
2	ENT	Confirmation	• Enter the menu interfaces level by level,		
3		Increment/Up	 confirm the parameter setting and save to EEPROM The number indicated by the cursor increases by one. Next function code. Used to switch the left and right screens while in monitor mode 		
4		Decrement/Down	The number indicated by the cursor minus one.The previous function code.		
5	M.K	Multi-function	 Perform function switchover according to the setting of 21.02 		
6	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	Shift	 Cursor shift. Monitor Status Displays the next monitor volume. Switch left and right screens. 		
7	RUN	Run	Start the frequency inverter in the operation panel control mode		
8	STOP	Stop/Reset	 During operation, press to stop the operation (restricted by parameter 21.03). In fault status, press this key to reset the fault. 		

9	• Hz	Indicator light:Hz				
10	Indicator light:A		$\cdot \mbox{Indicate}$ the digital display unit, all three lights off menas other units			
11	•	Indicator light:V				
12	●—rpm—● Hz A	Indicator light:HZ+A(rpm/min ute)	When Hz" and "A" are lit at the same time, the unit of the currently displayed parameter is "RPM PER MINUTE			
13	• - %-• ^	Indicator light:A+V(%)	When "A" and "V" are lit at the same time, the unit of the currently displayed parameter is "percent".			
14	Running lights		 Off: indicates a stop condition. On: indicates inverter is running. Blinking: Deceleration stopped. 			
15	REV ●	Direction indicator	 Used to indicate the sign of the variable when the LED is displaying one of the variables listed in 27.02; In other cases the sign of the output frequency is indicated. 			
16	16 Command source indicator		 Off: The command source is the keyboard. On: The command source is terminal. Blinking: The command source is communication. 			
17	ALM •	Fault indicator	• When it is on, the drive is faulty.			

4.2 Display hierarchy and menu mode

VFD500 digital keyboard display is divided into four layers, from top to bottom are: monitoring status, menu mode selection status, function code selection status, parameter editing / viewing status, as shown in Figure 4-2. In the menu mode selection status, press 【UP】 or 【DOWN】 key to select menu mode, press 【ENTER】 to enter the selected menu mode, the following describes several menu modes:

4-2Keyboard operation diagram

Standard mode (-bSC-)

If visiting access (r00.01) is standard, all the function codes mentioned in this manual are accessible.

If visiting access (r00.01) is the end user (in the state of user password lock), then only some function code can be accessed.

• User-difined mode (-USr-)

In this menu mode, only 20 user-defined parameters defined are displayed.

• Verify mode (-vrF-)

In this menu mode, only parameters that differ from the factory settings are displayed .

• Guide mode (-GdE-)

When users first use the inverter, can guide the user to complete a simple trial run $_{\circ}$

4.3 Digital tube display

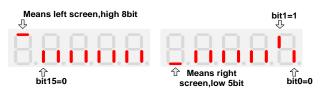
Display of decimal data

16 digits:

The range of unsigned numbers is $0 \sim 65535$ (without decimal point). The displayed range of signed numbers is -9999 ~ 32767 (excluding decimal point). The negative numbers less than -9999 will be displayed as -9999. **32 digits:**

The left and right screen display, combined with the following figure to illustrate:

Dot1 is used to distinguish between the left and right screens. On indicates the left panel (upper 5 digits) and turns off the right screen (lower 5 digits). When the left screen is displayed, Dot5 is used to indicate the sign digit. On indicates that the value is negative, off indicates the value is Positive.


The display range of 32-bit unsigned numbers is 0 to 4294967295 (excluding decimal point), and the displayed range of signed numbers is -2147483648 to 2147483647 (excluding the decimal point).

Binary data display

Binary number currently only supports 16 digits, points left and right screen display.

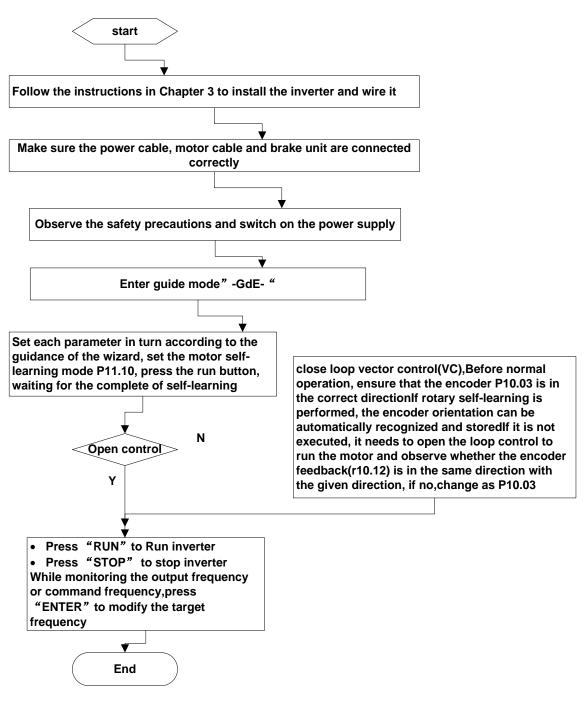
The leftmost digital tube is used to distinguish the left and right screens: the top digit segment lights up for the left panel and the bottom segment segment lights for the right panel.

Remove the leftmost digital tube, from right to left, followed by Bit0 ~ Bit15. The upper segment is lit to indicate 1,

the lower segment to light to indicate 0.

• Parameter attribute identification

Editable parameters The leftmost LED displays "P"; the leftmost LED of the read-only parameter displays "r", as shown below.


• Specific symbol

In some cases, the digital tube will display a specific symbol. The meaning of specific symbols is shown in the following table:Table4-2 Digital tube display symbol and meaning

Symbol	Meaning			
tUnE	Motor parameter self-learning			
bUSY	Processing parameter read and write requests			
	• Indicates that the parameters have been changed			
End	and saved to the EEPROM			
	 The mission has been completed 			
Er.xxx	• Fault code, "XXX" is the fault type, see Chapter 6 for			
	details			

4.4 Test run

Please follow the procedure below to commission the first time power-on.

4-3Trial run flow chart

Chapter 5 Function Code Table

The following is the VFD500 parameter distribution list:
--

Classification	Parameter group	Page
	00:Basic function	Page 37
	01:Frequency source selection	Page 39
	02:Start and stop	Page 45
Common	03:Ramp and S curve	Page 49
Common parameters	04: Analog and pulse input	Page 51
parameters	05:Analog and pulse output	Page 55
	06:Multi-function Digital input (DI)	Page 56
	07: Multi-function Digital output(DO)	Page 59
	08:Digital Output setting	Page 62
	10:Encoder type	Page 65
	11:Motor1 parmeter	Page 66
Motor control	12:Motor1 VFcontrol parameter	Page 68
	13:Motor1 Vector controlparameter	Page 71
	14:Torque control	Page 73
	16:Energy saving control	Page 74
	20:User-defined parameters	Page 75
	21:Keypad and display	Page 77
	22:AC Drive configuration	Page 79
Display and	23:Drive protection function setting	Page 81
protection	24:Motor protection parameter	Page 85
	25:Fault tracking parameter	Page 87
	26:Fault recording parameter	Page 87
	27:Monitoring parameter	Page 90
Communication	30:Modbus communication	Page 90
Communication	31:Canopen communication	Page 92
	40:Process PID Function	Page 92
	41:Sleep function	Page 98
Application	42:Simple PLC	Page 100
Аррисацон	43:Programmable delay unit	Page 102
	44:Comparator and logic unit/controller	Page 104
	45:Multifunction counter	Page 108
	60:Motor2 basic parameter	Page 110
Motor 2	61:Motor2 parameter	Page 111
	62:Motor2 VF control parameter	Page 111
	63:Motor2 vector control parameter	Page 111

Term Description:

The parameter is also called function code; the operation panel is also called the keyboard.

Due to usage habits, different terms may be used in different places in this manual, but all refer to the same content.

Symbol Description:

" \preccurlyeq " means that the setting value of this parameter can be changed when the inverter is stopped or running.

"★" means that the setting value of this parameter can not be changed when the inverter is running.

"•" indicates that the value of this parameter is the actual test record value, which can not be changed

Function	Parameter name	Description	Default	Property
code				
		00Group Basic Function		
P00.00	User password	 0 ~ 65535 No user password status after power-on (P00.01=1): The way to set a user password to lock is that Entering the same non-zero value two tmes in succession Locked staus Enter the password to unlock Unlocked status Enter the original password to lock inverter; enter the same value twice in a row to change the password (password will be cleared if you 	0	*
P00.01	Access authority	enter 0 two times in a row). 0: END USER Some parameter are not authorized to check when user password in locked state 1: Standard ALL Parameter can be checked	1	•
P00.02	Parameter copy and backup	 0: No action 11: save all parameter to EEPROM backup space 12: Restore all parameter from EEPROM backup space 	O	*
P00.03	RESET	 0: NO ACTION 11: Restore default parameter except for motor parameter and auto-tune related parameter and factory parameter 12:Restore default to factory parameter 13: Clear tripping record 	0	*
P00.04	Motor Control mode	 0: VF 1: SVC(sensorless vector control) > Open loop vector without encoder feedback and the feedback speed is internally estimated and supports torque control mode. 2: VC Vector control with sensor > Close loop vec tor and torque control supporting encoder feedback in high precision or torque control application. The inverter must be equipped with a PG card that matches the encoder. For the relevant parameters of the PG card, please refer to P10 group 	0	*

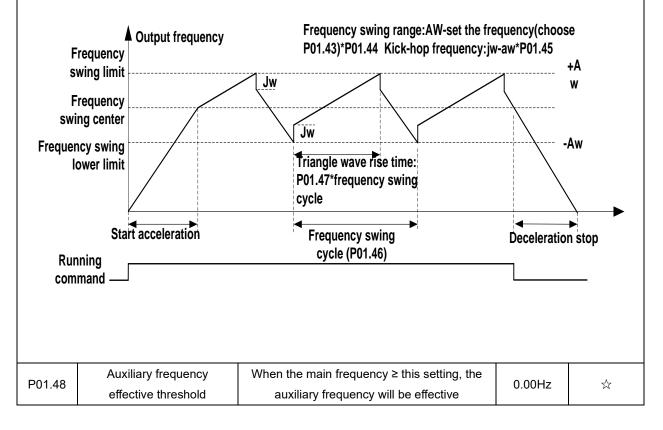
Function code	Parameter name	Description	Default	Property
P00.05	Running mode	 0: Speed mode 1: Torque mode If use with DI function, 19:Switch between torque and speed Control and 20: torque control diabled. Actuall effective running mode is related with DI status 	0	*
P00.06	Source of the Operation Command	 0: keypad 1: terminal 2: communication Command source: run, stop, forward, reverse, jog, fast brake stop.etc If use with DI function, 12: Switching run command to Keypad and 13: Switching run command to Communication,Actuall effective command source is related with DI status 	0	*
P00.07	Numeric frequency setting	00.00Hz~maximum frequency(Set P21.17=1 to change the unit to 1Rpm)	50.00Hz	☆
P00.08	Rotation direction	 0: Forward 1: Reverse It is only for keypad control to change running direction by giving frequency symbol to be reverse)If command by keypad/terminal /communication,and not want to achieve reverse running by giving frequency symbol to be reverse,need to change P22.13 in stop mode(see parameter P22.13) 	0	ž
P00.09	Reverse control	0: enable 1: disbale	0	*
P00.10	Motor option	0: motor 1 1: motor 2 If use with DI function,16:Switch between motor 1 and motor 2,Actuall effective command source is related with DI status	0	*
P00.11	Special industry	0: standard drive 1: Reserved	0	*
r00.18	Power board software version	-	-	•
r00.19	Control board software version	-	-	•
r00.21	SN 1	-	-	•
r00.22	SN 2	-	-	•

Functio	Parameter name	Description	Default	Property
n code				
	01Gr	oup frequency source selction		
P01.00	Main frequency source selection (A)	 0: Digital setting 1: Al1 2: Al2 3: Al3(IO externsion card) 4: Al4(IO externsion card) 5: HDI 6: multi-step speed 7: communication 8: PID 9: Internal PLC Notice:DI terminal function code 26-32 superior than this function code 	0	*
P01.01	Auxiliary frequency source selection (B)	Same as P01.00 Notice:DI terminal function code 33 superior than this function code	0	*
P01.02	Reference option for auxiliary frequency source	 Relative to Maximum frequency 1: Relative to main frequency 	0	*
P01.03	Auxiliary frequency gains	0.0~300.0	100.0%	${\sim}$
P01.04	Frequency source selection	 0: main frequency sourceA 1: auxiliary frequency sourceB 2: Main and auxiliary arithmetic results 3: Switchover between main and auxiliary frequency 4: switchover between main frequency source A and A+B Arithmetic results 5: Switchover between B and (A+B) (*) DI function code 25 effective to corresponding terminal ,frequency will adopt the latter 	0	*
P01.05 P01.06	Main and Auxiliary arithmetic Maximum frequency	 0: A+B 1: A-B 2: The bigger of main A and Auxliary B 3: The smaller of Main A and Auxiliary B 4: A*B A*B have better frequency adjustment ,wiely used for winding industry, fine sand machine, and leather, paper industry 10.00~600.00Hz 	0 50.00Hz	*
P01.07	Upper limit frequency control	0: digital setting (set through P01.08) 1: Al1 2: Al2 3: Reserved	0	*

Functio	Parameter name	Description	Default	Property
n code				
		4: Reserved		
		5: Pulse setting HDI		
		6: Reserved		
		7: Communication setting		
P01.08	Upper limit frequency	Lower limit frequency(P01.09) \sim maximum	50.00Hz	\$
101.00	Opper mint frequency	frequency (P01.06)	50.00112	~
P01.09	Lower limit frequency	0.00Hz \sim upper limit frequency	0.00Hz	\$
		0: Run at low limit frequency		
		1: Stop after delaying P01.11		
		2: Run at zero speed		
	Action when set	The inverter will coast to stop when the set		
P01.10	frequency lower than	frequency is lower than the lower-limit one.if	0	*
	lower limit frequency	the set frequency is above the lower limit one		
		again and it lasts for the time set byP01.11,		
		the inverter will come back to the running state		
		automatically.		
		0.000s~30.000s		
		This function code determines the hibernation		
		delay time. When the running frequency of the		
		inverter is lower than the lower limit one, the		
		inverter will stop to stand by.		
		When the set frequency is above the lower		
		limit one again and it lasts for the time set by		
	Delay time when set	P01.11, the inverter will run automatically.		
P01.11	frequency lower than	▲ Output frequency	0.000s	*
	lower limit frequency	t1 <t2, does="" inverter="" not="" so="" td="" the="" work<=""><td></td><td></td></t2,>		
		t1+t2=t3, so the inverter works		
		t3=P01.20		
		, , , , , , , , , , , , , , , , , , ,		
		Running Dormancy Running		
		Running Dormancy Running		
		Unit/ten/hundred'digit: three jump frequency		
D04.40	Jump frequency start up	1/2/3	000	_A_
P01.12	protection	0: Disable	000	\overleftrightarrow
		1: Enable (avoid risk speed)		
P01.13	Jump frequency 1 lower	0.00Hz∼(P01.14)	0.00Hz	\$
	limit			
P01.14	Jump frequency upper	P01.13- (P01.06)Maximum frequency	0.00Hz	${\sim}$
	limit			
P01.15	Jump frequency 2 lower	0.00Hz∼(P01.16)	0.00Hz	\$
	limit			
P01.16	Jump frequency 2 upper	P01.15 \sim maximum frequency(P01.06)	0.00Hz	\overleftrightarrow
	limit			

Chapter 5 Function code

Functio n code	Parameter r	name		De	scription		Default	Property	
II COUE	Jump frequency	3 lower							
P01.17	limit		0.00	Hz~(P01.18)			0.00Hz	\$	
P01.18	01.18 Jump frequency 3 upper limit		P01.	.17 \sim maximum	frequency(P01.0	06)	0.00Hz	$\stackrel{\sim}{\sim}$	
Risk s	peed or Jump freq	uency sta	rt up p	protection is use	d to some situa	tion which ne	ed avoid mot	or speed	
and speed i	range,for example	due to me	echan	ical resonance ,	P01.12 will be e	nabled to av	oide risk spe	ed in forward	
or reverse r	node								
0									
Motor frequency									
P01.18		1							
P01.17									
P01.16	The second secon								
P01.15									
P01.14									
P01.13		Giving free	uenor						
		Giving net	luency	►					
			Uniť	digit: 0 phase i	reference source	Э			
		•			set by				
				0-multi-step speed(P01.21)					
				1-preset frequency (P00.07)					
			2:Al1						
			3:AI2						
P01.19	Multi-step sp	Multi-step speed reference source		4:AI3(IO expansion board)				+	
101.15	reference so			5:Al4(IO expansion board)					
				01 pulse					
				7:Communication					
			8:PID						
				-	ation of multiple	speed			
			0: Combination method						
Combinati	on method Descr	intion	I: F	Priority method					
Compinatio	Multispeed	Multisp	aad	Multispeed	Multispeed	Combinatio	on method		
	terminal 4	termina		terminal 2	terminal 1		eference		
	Ineffective	Ineffect		Ineffective	Ineffective		peed 0		
	Ineffective	Ineffect		Ineffective	effective	Multis			
	Ineffective Ineffect			effective	Ineffective	Multis			
	Ineffective Ineffect			effective	effective	Multisp			
	Ineffective	effecti	ve	Ineffective	Ineffective	Multisp			
	Ineffective	effecti	ve	Ineffective	effective	Multisp			
	Ineffective	effecti	ve	effective	Ineffective	Multis	beed 6		
	Ineffective	effecti	ve	effective	effective	Multis	beed 7		
	effective	Ineffect	tive	Ineffective	Ineffective	Multis	beed 8		


Functio	Parameter r	name		De	escription		Default	Property
n code	effective	Ineffect		Ineffective	effective	N 4. JH		
	effective	Ineffect		effective	Ineffective		peed 9 peed 10	
	effective	Ineffect		effective	effective	-	beed 10 beed 11	
	effective	effecti		Ineffective	Ineffective		eed 11	
	effective	effecti	-	Ineffective	effective	-	eed 12 eed 13	
	effective	effecti		effective	Ineffective	-	eed 13	
	effective	effecti		effective	effective		eed 14	
Priority me	effective		ve	enective	enecuve	Wullisp		
,	-			Γ	Γ	1		
	Multispeed	Multisp		Multispeed	Multispeed		thod Speed	
	terminal 4	termina	-	terminal 2	terminal 1		ence	
	Ineffective	Ineffect		Ineffective	Ineffective		peed 0	
	Ineffective	Ineffect		Ineffective	effective		peed 1	
	Ineffective	Ineffect		effective	random		peed 2	
	Ineffective	effecti	ve	random	random		peed 3	
	effective	rando	m	random	random	Multis	peed 4	
P01.20	Multiple step s Rotation dire	dire	\sim 15 correspond ction rward direction 1	C C		0	*	
P01.21	Multiple step speed 0/in- built plc 1 of			er limit freque uency(P01.06)N 201.19 is set to Ilid.	ncy (P01.09) ~ lote: When the	~ maximum unit's digit	0.00Hz	\$
P01.22	Multiple step spe built plc 2			er limit freque uency(P01.06)	ency(P01.09) ~	maximum	0.00Hz	☆
P01.23	Multiplestep spe built plc 3	ed 2/in-	Lower limit frequency(P01.09) \sim maximum frequency(P01.06)		0.00Hz	\$		
P01.24	Multiple step spe built plc 4	ed 3/in-	Low	er limit freque uency(P01.06)	ency(P01.09) ~	maximum	0.00Hz	\$
P01.25	Multiple step spe built plc {	ed 4/in-	Low	er limit freque uency(P01.06)	ency(P01.09) ~	~ maximum	0.00Hz	\$
P01.26	Multiple-step spe built plc 6			Lower limit frequency(P01.09) \sim maximum frequency(P01.06)		0.00Hz	☆	
P01.27	Multiple step spe built plc 7	ed 6/in-	Low	Lower limit frequency(P01.09) \sim maximum frequency(P01.06)		0.00Hz	${\leftrightarrow}$	
P01.28	Multiple step spe built plc 8	ed 7/in-	Low	er limit freque uency(P01.06)	ency(P01.09) ~	maximum	0.00Hz	\$
P01.29	Multiple step speed 8/in-			er limit freque uency(P01.06)	ency(P01.09) ~	maximum	0.00Hz	\$
P01.30	Multiple step spe built plc 1	ed 9/in-	Low	er limit freque uency(P01.06)	ency(P01.09) ~	maximum	0.00Hz	☆

n code	Parameter name	Description	Default	Propert
n code				
P01.31	Multiple step speed	Lower limit frequency(P01.09) \sim maximum	0.00Hz	\overleftrightarrow
	10/in-built plc 11 Multiple step speed	frequency(P01.06)		
P01.32	11/in-built plc 12	c 12 frequency(P01.06)		\overleftrightarrow
	Multiple step speed			
P01.33	12/in-built plc 13	frequency(P01.06)	0.00Hz	$\stackrel{\wedge}{\simeq}$
	Multiple step speed Lower limit frequency(P01.09)~maximum			
P01.34	13/in-built plc 14	frequency(P01.06)	0.00Hz	\overleftrightarrow
D04.05	Multiple step speed	Lower limit frequency(P01.09)~maximum	0.0011-	^
P01.35	14/in-built plc 15	frequency(P01.06)	0.00Hz	\swarrow
P01.36 Multiple step speed		Lower limit frequency(P01.09)~maximum	0.00Hz	\$
101.00	15/in-built plc 16 frequency(P01.06)		0.00112	×
P01.37	Jog frequency	0.00Hz~maximum frequency(P01.06)	5.00Hz	\overleftrightarrow
P01.38	Jog command when	0: not responsive	0	*
1 01.00	running	1: responsive	0	^
P01.39	UP/DOWN rates	0.00(auto rates)~600.00Hz/s	1.00Hz/s	☆
		Unit'digit:		
		0: Zero clearing in non-running		
		1: Zero clearning when UP/DOWN command		
		not effective		
		2: Not zero cleaning (decide by remembering		
	TERMINAL UP AND	digit when power failure		
		Ten's digit:		
P01.40	DOWN CONTROL	0: Non-zero cleaning at power failure	0002	*
		1:Save at power failure UP/DOWN offset		
		Hundred's digit: UP/DOWN near to zero		
		0: Forbidden 1:Enable		
		Thousand's digit up and down action mode		
		0:Superposition		
		1:Gain effect		
		0.00~1.00		
		Rotation speed drop value based on Rated		
P01.41	Droop control gains	load (relative to maximum frequency)	0.00	\$
		Frequency drop volume:Max		
		frequency*P01.41*Current load/rated load		
	Droop control filtering			
P01.42	. 0	0.000s~10.000s	0.050s	\$

When the motor outputs rated torque, actual frequency drop is equal to P1.41. User can adjust this parameter from small to big gradually during commissioning.

Functio	Parameter name	Description	Default	Property
n code				
		0: relative to center of textile frequency		
P01.43	Toxtilo froguopov potting	1: relative to maximum frequency	0	\$
FU1.43	Textile frequency setting		0	×
		0.0% \sim 100% relative to center of textile		
		frequency P01.43 = 0Textile frequency Aw =		
P01.44	Textile frequency	P01.44 * center frequency	0.0%	$\stackrel{\wedge}{\simeq}$
		P01.43 = 1: Textile frequency Aw = P01.44 *		
		max frequency		
P01.45	Jump frequency	0.0% \sim 50.0% relative to textile frequency	0.0%	$\stackrel{\wedge}{\simeq}$
P01.46	Textile period	0.1s~3000.0s	10.0s	\overleftrightarrow
D04 47	Triangle wave rising time		50.00/	_A_
P01.47	coeffcient	0.1% \sim 100.0% relative to textile period	50.0%	\overleftrightarrow

This function is mostly used in textile and chemical industry and some application such as traversing and winding so it is used for balancing the workload allocation when multiple motors are used to drive the same load. The output frequency of the frequency inverters decreases as the load increases. You can reduce the workload of the motor under load by decreasing the output frequency for this motor, implementing workload balancing among multiple motors.**P01.44 or P01.46=0,This function disable**

Function code	Parameter name	Description	Default	Property
	02	Group Start and stop Control		
P02.00	Starting mode	 Direct start Inverter will start from P02.01,After P02.02,It will go to setting frequency as per S curve 1: Speed tracking/Searching Inverter will do search for motor speed and recognize and accelerate and decelerate to setting frequency.See Parameter P02.16-P02.19 The direction and speed will be tracked automatically for the smoothing starting of rotating motors. It suits the application with reverse rotation when big load starting. 	0	*
P02.01	Startup frequency	0.00Hz~10.00Hz	0.00Hz	*
P02.02	Startup frequency holding time	0.000s~10.000s Set a proper starting frequency to increase the torque of the inverter during starting. During the retention time of the starting frequency, the output frequency of the inverter is the starting frequency. And then, the inverter will run from the starting frequency to the set frequency. If the set frequency is lower than the starting frequency, the inverter will stop running and keep in the stand-by state. The starting frequency is not limited in the lower limit frequency.	0.000s	*
P02.03	Quick-response excitation	 0: Disable 1: Enable Set 1= enable it will automatically calculate pre-excitation current P02.04 and pre-excitaton time ,after finishing calculation,this parameter will reset to 0 	0	*
P02.04	Pre-excitation current	0%~200% motor rated current	Depend	*
P02.05	Pre-excitation time	0.00s~10.00s Pre-excitation enable Asynchronous motor for magnetic field for higher starting torque	Depend	*
P02.06	DC brake current at start-up	0~100% motor rated current	100%	\$
P02.07	DC brake time at start- up	$0.000 \mathrm{s}{\sim} 30.000 \mathrm{s}$ No start DC brake when set to 0s	0.000s	*

Function code	Parameter name	Description	Default	Property
DC braking is used to make the running motor stop & restart. Pre-excitation is used to establish asynchronous motor magnetic field, then start, improve the response speed. DC braking is only valid when start directly, the inverter performs DC braking according to P02- 06 firstly, and runs after P02-07. If DC braking time is 0, the inverter starts directly. The bigger the DC braking current is, the greater the braking force If the start mode is pre-excitation start, then the inverter establishes magnetic field according to the set pre-excitation current firstly, runs after the set pre-excitation time. If the pre-excitation time is 0, the inverter starts directly. DC braking current before start/pre-excitation current refers to the percentage of the inverter rated current.				
P02.08 Stop method 0: ramp to stop after the stop command becomes valid, the inverter decelerates to reduce the outputfrequency during the set time. When the frequency decreases to 0Hz, the inverter stops. 0 ☆ 1: free coast to stop after the stop command becomes valid, the inverter ceases the output 1 immediately. And the load coasts to stop at the mechanical inertia. 1				
P02.09	Startup frequency of DC brake at stop	0.00Hz~50.00Hz start the DC braking when running frequency reaches starting frequency determined by P02.09.	1.00Hz	*
P02.10	DC braking current at stop	0~200% motor rated current(Maximum value not higher than drive rated current) the value of P02.10 is the percentage of rated current of inverter. The bigger the DC braking current is, the greater the braking torque isDC braking time: the retention time of DC braking. If the time is 0, the DC braking is invalid. The inverter will stop at the set deceleration time.	100%	Ŕ
P02.11	DC brake time at stop	0.000s~30.000s Inverters blocks the output before starting the DC braking. After this waiting time, the DC braking will be started so as to prevent over-current	0.000s	*

Function code	Parameter name	Description	Default	Property
		fault caused by DC braking at high speed.		
P02.12	Magnetic flux brake gain	1.00~1.50 Over excitation braking convert some kinetic energy to motor heating by increasing motor excitation.value 1 means ineffective: value higher,better performance but output current bigger This inverter can slow down the motor by increasing the magnetic flux. The energy generated by the motor during braking can be transformed into heat energy by increasing the magnetic flux. The inverter monitors the state of the motor continuously even during the magnetic flux period. So the magnetic flux can be used in the motor stop, as well as to change the rotation speed of the motor. Its other advantages are: Brake immediately after the stop command. It does not need to wait the magnetic flux weaken. The cooling is better. The current of the stator other than the rotor increases during magnetic flux braking, while the cooling of the stator is more effective than the rotor.	1.00	*
P02.13	Delaying frequency at stop	0.00Hz~20.00Hz	0.50Hz	*
P02.14	Delaying time at stop	0.000s~60.000s 0.000s:no function for delaying time at stop >0.000s:it is effective,when output frequency decrease lower than delaying frequency at stop (P02.13),inverter will block pulse output after delaying time at stop (P02.14).if run command comes during delaying time,inverter will restart.it is useful to some application with jog function	0.000s	*
P02.15	The minimum blocking time after free stop	0.010s~30.000s	Depend	*
P02.16	Speed tracking mode	Unit's digit: tracking mode 0 : Speed tracking for maximum output frequency	00	*

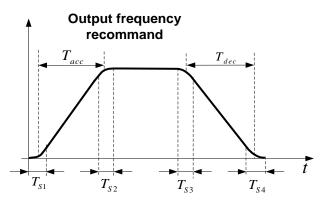
Function code	Parameter name	Description	Default	Property
		 Speed tracking for frequency at stop Speed tracking for grid frequency 		
		Ten's digit: direction choosing		
		0: only search at given frequency direction		
		1: search on the other direction when failed for		
		given frequency tracking		
P02.17	Deceleration time for	0.1s∼20.0s	2.0s	*
F 02.17	speed search	0.15-20.05	2.05	*
P02.18	Current for speed	10% \sim 150% motor rated current	40%	+
PU2.10	search		40%	*
D02 10	Speed search	0.00- 10.00	1.00	+
P02.19	compensation factor	0.00~10.00	1.00	*

Function code	Parameter name	Description	Default	Property	
	03 Group Ramp and S curve				
	Acceleration and	0: linear			
P03.00	deceleration	1: S curve A	0	*	
	curve selection	2: S curve B			

Acceleration and deceleration curve, also known as "Ramp Frequency Generator (RFG)", is used to smooth the frequency command. VFD500 supports the following acceleration and deceleration curve:

0: linear acceleration / deceleration

The output changes at a constant acceleration or deceleration. Acceleration time refers to the time from when the inverter accelerates from zero to the reference frequency (selected by P03.15); deceleration time refers to the time required to decelerate from the reference frequency to zero.


1: S curve method

This acceleration and deceleration curve acceleration "a" changes in a ramp, start and stop relatively flat. Acceleration and deceleration process as shown below, Tacc and Tdec for the set acceleration and deceleration time.

The acceleration and deceleration curve of the equivalent acceleration and deceleration time:

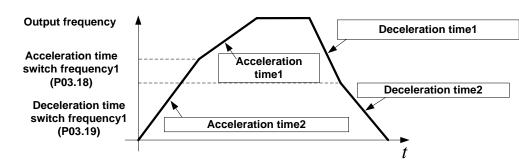
Acceleration time = Tacc + (Ts1 + Ts2) / 2

Deceleration time = Tdec + (Ts3 + Ts4) / 2

2: S curve method B

The time of this S-curve is defined as in the method A except that in the acceleration / deceleration process, if the target frequency suddenly approaches or the acceleration / deceleration time changes, the S-curve is re-planned. In addition, when the target frequency changes, the S Curves avoid "overshoot" as much as possible.

		Setting value depend on P03.16			
P03.01	Acceleration time 1	P03.16 = 2, 0.00~600.00s;	Depend	_^_	
P03.01	Acceleration time 1	P03.16 = 1, 0.0s∼6000.0s;	on model	${\propto}$	
		P03.16 = 0, 0s∼60000s			
		Setting value depend on P03.16			
D02.02	Deceleration time 1	P03.16 = 2, 0.00~600.00s;	Depend	_^_	
P03.02		2 Deceleration time 1	P03.16 = 1, 0.0s∼6000.0s;	on model	${\propto}$
		P03.16 = 0, 0s∼60000s			
P03.03	Accelerationtime2	0.01∼60000s same as P03.01	Depend	$\stackrel{\sim}{\sim}$	
F03.03	Accelerationtimez		on model	X	
D02.04	Deceloration time?	$0.01_{-}.60000_{-}$ come es P02.02	Depend	${\approx}$	
F03.04	P03.04 Deceleration time2	$0.01{\sim}60000$ s same as P03.02	on model	×	
D02.05	Acceleration time3	0.01- 600000 como os P02.01	Depend	_^_	
P03.05	Acceleration times	$0.01{\sim}60000$ s same as P03.01	on model	${\leftarrow}$	


Function code	Parameter name	Description	Default	Property
P03.06	Deceleration time3	0.01∼60000s same as P03.02	Depend	₹
1 03.00	Deceleration times	0.01 *000003 same as 1 03.02	on model	A
P03.07	Acceleration time4	0.01∼60000s same as P03.01	Depend	₹
F03.07	Acceleration time4	0.01 ² 000000s same as F03.01	on model	X
P03.08	Deceleration time4	0.01~60000s same as P03.02	Depend	
P03.00	Deceleration time4	0.01/~600000s same as P03.02	on model	${\simeq}$

The VFD500 provides four groups of acceleration and deceleration time. The actual acceleration / deceleration time can be selected by different methods such as DI terminal, output frequency and PLC running segments. Several methods can not be used at the same time. Factory default is to use acceleration / deceleration time

1.DI terminal select acceleration and deceleration time of the mapping table is as follows::

Acceleration and	Acceleration and			
deceleration time	deceleration time	Acceleration and deceleration time		
DI terminal 2	DI terminal 1			
Ineffective	Ineffective	Acceleration and deceleration time		
menecuve	menecuve	terminal 1(P03.01,P03.02)		
Ineffective Effective		Acceleration and deceleration time		
menecuve	Effective	terminal 2(P03.03,P03.04)		
Effective	Ineffective	Acceleration and deceleration time		
Ellective	menecuve	terminal 3(P03.05,P03.06)		
Effective	Effective	Acceleration and deceleration time		
		terminal 4(P03.07,P03.08)		

The schematic diagram of selecting acceleration / deceleration time according to the output frequency is as follows:

Other ways to select acceleration	/ deceleration time can be found in t	the description of relevant parameters.
other ways to beleet acceleration		and accomption of relevant parameters

P03.09	Jog Acceleration time	Time Setting same as P03.01	6.00s	\$
P03.10	Jog Deceleration time	Time Setting same as P03.02	10.00s	X
P03.11	S-curve Acceleration begin time	Setting value depend on P03.16 P03.16 = 2, 0.01~30.00s; P03.16 = 1, 0.1s~300.0s; P03.16 = 0, 1s~3000s	0.50s	*
P03.12	S-curve Acceleration arrival time	SAME AS P03.11	0.50s	\$
P03.13	S-curve Deceleration	SAME AS P03.11	0.50s	\$

Function code	Parameter name	Description	Default	Property
	begin time			
P03.14	S-curve Deceleration Arrival time	SAME AS P03.11	0.50s	\$
P03.15	Accel and Deceltime frequency benchmark	0: Maximum frequency 1: Motor rated frequency	0	*
P03.16	Accel and Decel time unit selection	0: 1s 1: 0.1s 2: 0.01s	2	*
P03.17	Quickstop deceleration time	0.01~65000s	5.00s	☆
P03.18	Switchingfrequency 1 in acceleration time	0.00Hz \sim maximum frequency(P01.06)	0.00Hz	☆
P03.19	Switchingfrequency 1 in deceleration time	0.00Hz \sim maximum frequency(P01.06)	0.00Hz	\$
P03.20	Forward/reverse Dead band time	$0.00s{\sim}30.00s$ Waiting time for zero speed during forward and reverse switchover	0.00s	*
		04 Group Analog and Pulse input		
P04.00	Minimum input pulse frequency	0.00kHz~ 50.00kHz P04.03	1.00kHz	Å
P04.01	Maximum input pulse frequency	0.00kHz~ 50.00kHz P04.02	30.00kHz	\Rightarrow
P04.02	Setting Corresponding to Minimum input	-100.0%~ 100.0%	0.0%	☆
P04.03	Setting Corresponding to maximum input	-100.0%~ 100.0%	100.0%	☆
P04.04	Pulse input filter time	0.000s~10.000s	0.050s	\$
r04.05	Pluse input frequency	0.00kHz \sim 50.00kHz(it is used to check HDI pulse input frequency)	-	•
r04.06	HDI equivalent value	-100.0% \sim 100.0%(it is used to View the output of the HDI mapping curve)	-	•
P04.07	AI 1 Curve setting	Unit's: Al curve selection 0: curve A 1: curve B 2: Curve C	00	*

Function	Parameter	Description	Default	Property
code	name			
		3: Curve D		
		Ten'unit: when input signal lower than minimum input		
		0: equal to minimum input		
		1: equal to 0.0%		
P04.08	AI1 filter time	0.000s~10.000s	0.100s	\$
		0.00V \sim 10.00V (it is used to view the port voltage of Al1. When		
r04.09	Al 1 actual value	Al1 is a current type (0~20mA) input, multiplying this value by 2	-	•
		is the input current (mA) of the AI1 port.)		
r04.10	AI 1 Conversion	-100.0% \sim 100.0%(It is used to view the output of the AI1	-	•
	value	mapped curve)		
		Unit's: Al curve selection		
		0: curve A		
		1: curve B		
P04.11	AI 2 Curve setting	2: Curve C	01	+
1 04.11	AI 2 Guive setting	3: Curve D	01	^
		Ten'unit: when input signal lower than minimum input		
		0: equal to minimum input		
		1: equal to 0.0%		
P04.12	AI2 filter time	0.000s~10.000s	0.100s	☆
		0.00V \sim 10.00V (it is used to view the port voltage of Al2. When		
r04.13	AI 2 actual value	AI2 is a current type (0~20mA) input, multiplying this value by 2	-	•
		is the input current (mA) of the AI2 port.)		
	AI 2 Conversion	-100.0% \sim 100.0%(It is used to view the output of the AI2		
r04.14	value	mapped curve)	-	•
		Unit's: Al curve selection		
		0: curve A		
		1: curve B		
	AI 3(option card)	2: Curve C		
P04.15	Curve setting	3: Curve D	02	*
	edi ve couling	Ten'unit: when input signal lower than minimum input		
		0: equal to minimum input		
		1: equal to 0.0%		
	AI3 (option card)			
P04.16	filter time	0.000s~10.000s	0.100s	\$
		$0.00V{\sim}10.00V$ (it is used to view the port voltage of Al3. When		
r04.17	AI3(option card)	Al3 is a current type $(0~20\text{mA})$ input, multiplying this value by 2	_	-
104.17	actual value	is the input current (mA) of the Al3 port.)	-	•
	Al2(aption cord)			
r04.18	Al3(option card)	-100.0% \sim 100.0% (It is used to view the output of the AI3	-	•
	Conversion value	mapped curve)		
		Unit's: Al curve selection		
D04.40	AI 4(option card)	0: curve A		
P04.19	Curve setting	1: curve B	03	*
	-	2: Curve C		
		3: Curve D		

Function code	Parameter name		Description	Default	Property
			nen input signal lower than minimum input minimum input 0.0%		
P04.20	AI4(option card) filter time	0.000s~10.	000s	0.100s	42
r04.21	Al4(option card) actual value	Al4 is a curr	10V (it is used to view the port voltage of Al4. When ent type (0~20mA) input, multiplying this value by 2 current (mA) of the Al4 port.)	-	•
r04.22	Al4(option card) Conversion value	-100.0%~1 mapped cur	00.0%(It is used to view the output of the AI4 ve)	-	•
P04.23	Curve A horizontal axis 1	0.00V~ P04.25	Corresponding setting P04.2 6	0.00V	Å
P04.24	Curve Avertical axis 1	-100.0%~ 100.0%	P04.2	0.0%	Å
P04.25	Curve A horizontal axis 2	P04.23~ 10.00V	⁴ ^{Pó4.2} ^{Po4.25} AI Note:input less than P04.23,output	10.00V	\$7
P04.26	Curve A vertical axis 2	-100.0%~ 100.0%	decided by curve ten's digit	100.0%	4
-	hod mode for AI1 4~20				
	e corresponding AI1 ju		O board to current; (default), P04.23=2.00.		
P04.27	Curve B horizontal axis 1	0.00V~ P04.29	Correspondi ng setting P04.30	0.00V	\$
P04.28	Curve B vertical axis 1	-100.0%~ 100.0%	P04.27 P04.29	0.0%	$\stackrel{\wedge}{\sim}$
P04.29	Curve B horizontal axis 2	P04.27~ 10.00V		10.00V	
P04.30	Curve B vertical axis 2	-100.0%~ 100.0%	if you want to use 4-20MA,Set 04.27=2.00V Note:input less than P04.27,output decide by curve ten's digit	100.0%	\overleftrightarrow
	hod mode for AI1 4~20				
	e corresponding AI1 ju Inction code: P04.11 o				
	Curve C horizontal	$0.00V \sim$	Grauny, F04.27-2.00	0.00V	

Function code	Parameter name		Description	Default	Property
P04.32	Curve C vertical axis 1	-100.0%~ 100.0%		0.0%	\$
P04.33	Curve C horizontal axis 2	P04.31~ P04.35	Corresponding setting	3.00V	*
P04.34	Curve C vertical axis 2	-100.0%~ 100.0%	P04.38	30.0%	${\leftrightarrow}$
P04.35	Curve C horizontal axis 3	P04.33~ P04.37	P04.36 P04.34	6.00V	${\swarrow}$
P04.36	Curve C vertical axis 3	-100.0%~ 100.0%	P04.32 V P04.33 P04.35 P04.37 AI	60.0%	${\leftrightarrow}$
P04.37	Curve C horizontal axis 4	P04.35~ 10.00V	Note:input less than P04.31,output decided by curve ten's digit	10.00V	${\leftrightarrow}$
P04.38	Curve C vertical axis 4	-100.0%~ 100.0%	decided by curve ten's digit	100.0%	*
P04.39	Curve D horizontal axis 1	0.00V~ P04.41		0.00V	☆
P04.40	Curve D vertical axis 1	-100.0%~ 100.0%	Corresponding setting	0.0%	\$
P04.41	Curve D horizontal axis 2	P04.39~ P04.43	P04.46	3.00V	☆
P04.42	Curve D vertical axis 2	-100.0%~ 100.0%	P04.44	30.0%	\$
P04.43	Curve D horizontal axis 3	P04.41~ P04.45	P04.42	6.00V	\$
P04.44	Curve D vertical axis 3	-100.0%~ 100.0%	P04.40	60.0%	\$
P04.45	Curve D horizontal axis 4	P04.43~ 10.00V	Note:input less than P04.39,output decided by curve ten's digit	10.00V	\$
P04.46	Curve D vertical axis 4	-100.0%~ 100.0%		100.0%	☆

Description: The range of HDI, Al1 ~ Al4 mapping curve:

- For frequency setting, 100% corresponds to the maximum frequency P01.06.
- ➤ For torque setting, 100% corresponds to the maximum torque P14.02.
- > For other uses, see the description of the relevant function.

	05 Gro	oup Analog and Pulse output		
r05.00	Actual output Pulse frequency	0.00kHz \sim 50.00kHz	-	•
P05.01	HDO Pulse Output type	0: Common numeric output (DO2 P07.02) 1: high frequency pulse output (Hdo)	0	X4
P05.02	HDO output source selection	 0: Running frequency (0~max frequency) 1: Set frequency (0~max frequency) 2: output current (0~2times motor rated current) 3: output torque(0~3times motor rated torque) 4: set torque(0~3times motor rated torque) 5: output voltage (0~2times motor rated voltage) 6: DC bus voltage (0~2times drives standard DC bus voltage) 7: output power (0~2times motor rated power) 8:encoder rotating speed(0-maximum frequency rotating speed) 9: Al1 (0.00~10.00V) 10: Al2 (0.00~10.00V) 12: Al4 (0.00~10.00V) 	0	*
P05.03	HDO Minimum output pulse frequency	0.00kHz \sim 50.00kHz HDO terminal output pulse frequencywhen Output signal source=0	1.00kHz	\$
P05.04	HDO Max output pulse frequency	0.00kHz~50.00kHz HDO terminal output pulse frequencywhen Output signal source=maximum value	30.00kHz	\$
r05.05	AO1 actual value	0.0%~100.0%	-	•
P05.06	AO1 output function signal selection	Same as P05.02 function description	0	\$
P05.07	AO1 output offset	-100.0%~100.0%	0.0%	\overleftrightarrow
P05.08	AO1 output gain	-10.00~10.00	1.00	47
source and AO.c = P0 AO.p: AO1 Example:	d actual output can be change 5.07 + P05.08 × AO.pAO.c: th Value before correction and AO1 is set to 4~20mA outpu	ne actual output of AO1; AO.c, AO.p, 100.0% of P05.07 corresponds to 10		Inal
	function code: P05.07=20.0			
r05.09	AO2 actual value	0.0%~100.0%	-	•
P05.10	AO2 output function signal selection	Same as P05.02 function description	0	**
P05.11	AO2 output offset	-100.0%~100.0%	0.0%	☆
P05.12	AO2 gain	-10.00~10.00	1.00	☆
	•			

The output error of AO2 can be corrected by P05.11 and P05.12, or the mapping relationship between signal source and actual output can be changed. The formula is:

AO.c = P05.11 + P05.12 × AO.pAO.c: the actual output of AO2;

AO.p: AO2 value before correction and AO.c, AO.p, 100.0% of P05.11 corresponds to 10V or 20mA.

Example: Such as: AO2 is set to 4~20mA output:

1. Switch the corresponding AO2 jumper on the IO board to current

2. Set the function code: P05.11=20.0%, P05.12=0.80

	06 Gro	oup Multi-function Digital input		
r06.00	DI port status	Bit0~Bit8 Correspond to DI1~DI8		
r06.00	DI port status	Bit12~Bit15 Correspond to VDI1~VDI4	-	•
		0: No function		
		1: FORWARD		
		2: Reverse/Forward and reverse switchover		
P06.01	DI1 Numeric input function	3: Three wire control	1	*
		4: Forward jog command		
		5: Reverse jog command		
		6: Terminal UP		
		7: Terminal DOWN		
P06.02	DI2 Numeric input function	8: Clear up UP/DOWN offset	2	*
		9: Coast to stop/free stop		
		10: Fault reset		
	DI3 Numeric input function	11: Reverse forbidden		
		12: Switching run command to Keypad	4	
P06.03		13: Switching run command to Communication		*
		14: fast stop		
		15: external stop		
		16: Switch between motor 1 and motor 2		
		17: Pause operatoin		
		18: DC braking		
P06.04	DI4 Numeric input function	19: Switch between torque and speed Control	10	*
		20: Torque control diabled		
		21: Multi-step speed terminal 1		
		22: Multi-step speed terminal2		
		23: Multi-step speedterminal3		
	DI5(HDI) Numeric input	24: Multi-step speed terminal4		
P06.05	function	25: Frequency source switchover	0	*
	Iuncion	26: Switch main frequency source to Numeric		
		frequency setting		
		27: Switch main frequency source to AI1		
	DI6 Numeric input function	28: Switch main frequency source to Al2		
P06.06	(option card)	29: Switch main frequency source to AI3	0	*
		30: Switch main frequency source to Al4		
		31: Switch main frequency source to high-		

		· · · ·		
P06.07	DI7 Numeric input function (option card)	 frequency pulse input 32: Switch main frequency source to communication setting 33: Switch auxiliary frequency source to numeric frequency setting 34: Accel and Decel time terminal 1 	0	*
P06.08	DI8 Numeric input function (option card)	 35: Accel and Decel time termina2 36: Accel and Decel Stop 37: User-defined fault 1 38: User-defined fault 2 39: PID pause 40: PID integral pause 41: PID parameter Switchover 42: PID Positive/negative reaction switch 43: Preset PID terminal 1 44: Preset PID terminal 2 45: PID Main and Auxaliary command switch 46: PID Main and Auxaliary feedback switch 	0	*
P06.09	DI9 Numeric input function (option card)		0	*
P06.13	VDI1 Numeric input function(Virtual DI)	47: Simple PLC status reset	0	*
P06.14	VDI2 Numeric input function(Virtual DI)	 48: Simple PLC time stop 49: Swing frequency stop 50: Counter 1 input 51: Counter 1 reset/clear 52: Counter 2 input 53: Counter 1 reset/clear 54: Clear/reset timed running time 55: Motor 2 Accel and Decel time selection 	0	*
P06.15	VDI3 Numeric input function(Virtual DI)		0	*
P06.16	VDI4 Numeric input function(Virtual DI)		0	*
P06.17	Virtual input source	Unit'digit: VDI1 input source 0~F: P06.33 specifies the bit0~bit15 of the parameter Ten's digit: VDI2 input source 0~F: P06.34 specifies the bit0~bit15 of the parameter. Hundred's digit: VDI3 input source 0~F: P06.35 specifies the bit0~bit15 of the parameter Thousand's digit: VDI4 input source 0~F: P06.36 specifies the bit0~bit15 of the parameter	0003	*
P06.18	DI Forcing function	Define as per bit :Disable;1:Enable Bit0-bit11:DI1-DI12 Bit12-bit15:VDI1-VDI4	H0000000 0 L00000000	*

	[
		When the bit is enabled, the state of the DI or		
		VDI is set by the corresponding bit of P06.19.		
		Define as per bit 0:effective;1:ineffective		
P06.19	DI Forcing data	Bit0-bit11:DI1-DI12	0	$\stackrel{\wedge}{\sim}$
	5	Bit12-bit15:VDI1-VDI4	-	
		Define as per bit 0:positive logic;1:negative logic		
	Effective logic of	Bit0-bit11:DI1-DI12		
P06.20	Numericinput terminal	Bit12-bit15:VDI1-VDI4	0	*
		In the reverse logic, the inactive level of the DI		
		terminal becomes the active level.		
P06.21	DI1 Effective delay time	0.000s~30.000s	0.000s	☆
P06.22	DI1 ineffective delay time	0.000s~30.000s	0.000s	$\stackrel{\wedge}{\simeq}$
P06.23	DI2 Effective delay time	0.000s~30.000s	0.000s	☆
P06.24	DI2 ineffective delay time	0.000s~30.000s	0.000s	☆
P06.25	DI3 Effective delay time	0.000s~30.000s	0.000s	☆
P06.26	DI3 ineffective delay time	0.000s~30.000s	0.000s	\overleftrightarrow
P06.27	DI4 Effective delay time	0.000s~30.000s	0.000s	$\overset{\wedge}{\sim}$
P06.28	DI4 ineffective delay time	0.000s~30.000s	0.000s	$\overset{\sim}{\sim}$
		0: 2-wire mode (FWD+REV)1		
P06.29	Two wire/3wire operation	1: 2-wire mode RUN+DIRECTION)2	0	-
P00.29	control	2: 3-wire 1(FWD+REV+ENABLE)		*
		3: 3-wire 2 RUN +FWD/REV+ENABLE		
	SB2 DI1 com SB1 DI3 o com DI3 DI2	DI1 Forward Run (FWD) DI2 Reverse RUN (REV) COM Wo-line mode 1 forward mand peration mand RUN (REV) K2 DI2 operation direction COM Figure 2: Two-line mode DI1 forward command DI3 stop command K DI2 operation direction DI1 forward command COM DI2 operation direction DI1 forward command COM DI2 operation direction DI1 forward command COM DI2 operation direction DI1 forward command COM DI2 operation direction DI1 forward command COM COM	ode2	
	ФСОМ	ФСОМ		
	Figure 3: Three	ee-line mode1 Figure 4: Three-line mod	e2	
Two-line	mode 1:	č		
K1 is clos	sed, the drive is running forwa	rd, K2 closed reverse operation, K1, K2 at the same	time closed o	r
	cted, the inverter stops runnin			
	mode 2:			
		nverter forward, K2 closed inverter reverse; K1 off th		

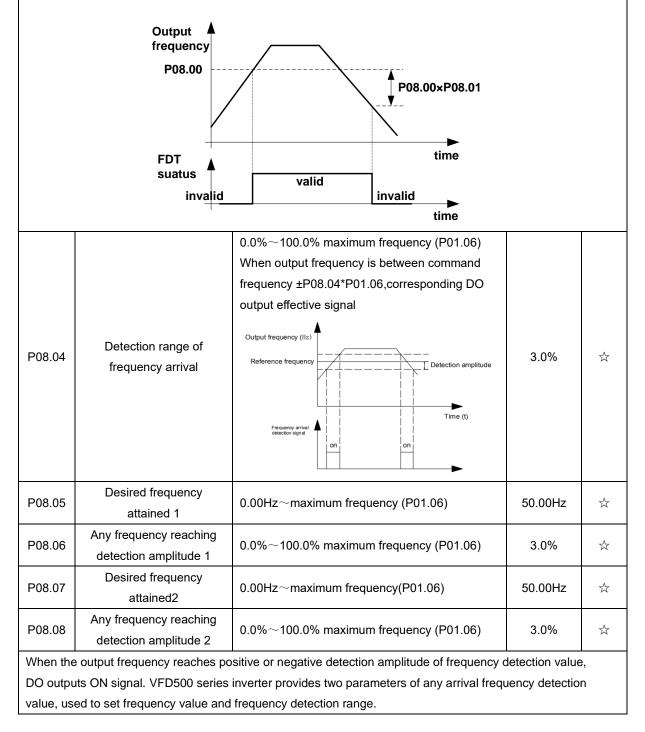
running.

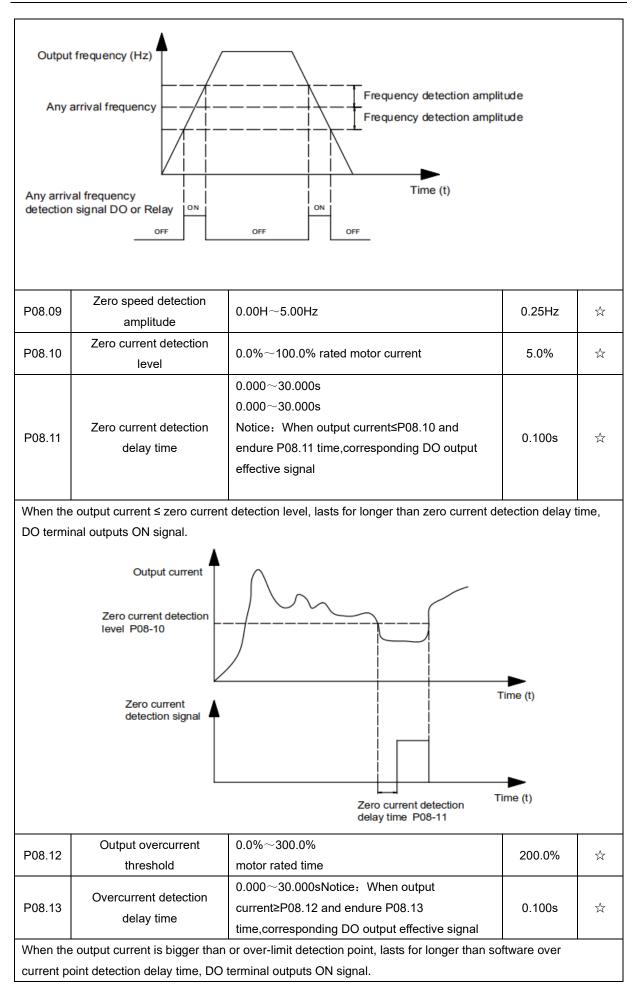
Three-line mode 1:

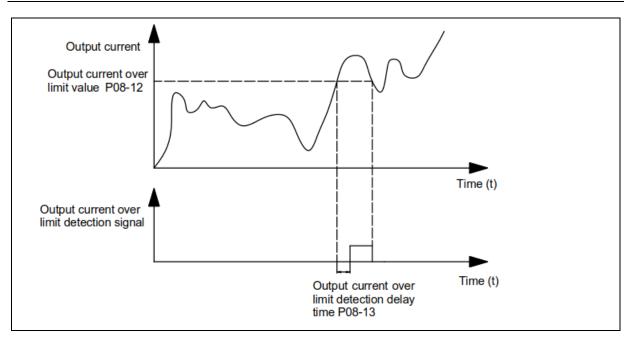
DI3 is set to three-wire control function. When the SB1 button is closed, press the SB2 button. The inverter is forward running. Press the SB3 button to invert the inverter. When the SB1 button is off, the inverter will stop. During normal start-up and running, it is necessary to keep the SB1 button closed, and the commands of SB2 and SB3 buttons take effect during the closing operation. The running status of the inverter takes the last key action of the three buttons as the standard.

Three-line mode 2:

DI3 is set to three-wire control function. When the SB1 button is closed, press the SB2 button to run the inverter, K to switch the inverter forward, K to close the inverter and SB1 to turn off the inverter. During normal start-up and operation, it is necessary to keep the SB1 button closed and the command of the SB2 button effective during the closing operation.


	a b 1			
		0.000~0.100s		
	Digital input termimal	Set the sample filter time of DI1~DI4 and HDI		
P06.30	filtering time	terminals. If the interference is strong, increase	0.010s	${\simeq}$
		the parameter to avoid wrong operation.		
		0: no protection		
		When command is terminal ,power on and		
		terminal effective,inverter will run		
P06.31	Terminal protection	1: protection	0	_
F00.31	function	When command is terminal ,power on and	0	×
		terminal effective, inverter will not run ,so need		
		terminal ineffective then effective, then inverter		
		will run		
P06.32	DI terminal on/ready time	0.000s~30.000s	1.000s	*
		To Select the source of VDI1, Please select the		
P06.33	VDI1 source	input signal of VDI1 together with the Unit's digit	06.00	*
		of P06.17.		
		To Select the source of VDI2, Please select the		
P06.34	VDI 2 source	input signal of VDI1 together with the Ten's digit	06.00	*
		of P06.17.		
		To Select the source of VDI3, Please select the		
P06.35	VDI 3 source	input signal of VDI1 together with the Hundred's	07.00	*
		digit of P06.17.		
		To Select the source of VDI4, Please select the		
P06.36	VDI 4 source	input signal of VDI1 together with the	44.00	*
		Thousand's digit of P06.17.		
	07 Group Multi-function Digital output			
		Define as per bit,		
		0:ineffective 1:effective		
r07.00	DO output port status	Bit0:DO1 Bit1:D02 Bit2:relay1, Bit 3:relay	-	•
		2(option) Bit4: DO3;Bit5: DO4 Bit6: DO5; Bit7:		
		DO6Bit8: VDO1;Bit9: VDO2		


P07.01	DO1 Output terminal function group	0:No function 1:READY 2:RUN 3:Error1 (All fault) 4:Error2 (Stop fault) 5:Error 3 t(fault but It still keeps running) 6:Swing frequency limit 7:Torque limit	0	Ŕ
P07.02	DO2(HDO) Output terminal function group	 8:Reverse running 9: Upper limit frequency arrival 10:Lower limit frequency arrival 1(not detect when stop) 11: Lower limit frequency arrival2(detect when stop) 12:FDT1 output frequency detection range 	0	*
P07.03	Relay 1 Output terminal function group(T1A T1B T1C)	 13:FDT2 output frequency detection range 14:Setting frequency arrival 15:Desired frequency attained 1 P08.05 16:Desired frequency attained 2P08.07 17:Zero speed (stop without output) 18: Zero speed (stop with output) 	3	*
P07.04	Relay 2 Output terminal function group(T2A T2B T2C)(Optional)	19:Zero current status 20:Output current exceed limit 21:Counter 1 setting value arrival 22:Counter 1 setting value arrival 23:Simple PLC cycle finish 24:Reserved	0	Å
P07.05	DO3 Output terminal function group(IO card)	25:Drive overload pre-warning 26: Motor overload pre-warning 27: Motor overheat pre-warning 28:Off loading 29:Reserved 30:Reserved	0	ž
P07.06	DO4 Output terminal function group(IO card)	 31: Reserved 32:Variable selector unit 1 output 33:Variable selector unit 2 output 34:Variable selector unit 3 output 35:Variable selector unit 4 output 36:Logic unit 1 output 	0	\$
P07.07	DO5 Output terminal function group(IO card)	 37:Logic unit 2 output 38:Logic unit 3 output 39:Logic unit 4 output 40:Delaying unit 1 output 41:Delaying unit 2 output 42: Delaying unit 3 output 	0	☆


P07.08	DO6 Output terminal function group(IO card)	43: Delaying unit 4 output <mark>44: Reserved</mark>	0	\$
P07.09	VDO1(virtual DO1) output	45: Reserved	0	\$
1 07.00	Terminal function			^
P07.10	VDO2(virtual DO2) output Terminal function		0	ž
P07.11	Output logic negative	Define as per bit O:off;1:on(negative) Bit0:DO1 Bit1:DO2 Bit2:Relay 1 Bit3: Relay 2(option) Bit4: DO3;Bit5: DO4 Bit6: DO5; Bit7: DO6 Bit8: VDO1;Bit9: VDO2 Notice:posive logic equivalent to Normal open point And negative logic equivalent to Normal close point	0	*
P07.12	DO1 effective delay time	0.000s~30.000s	0.000s	☆
P07.13	DO1 ineffective delay time	0.000s~30.000s	0.000s	
P07.14	DO2 effective delay time	0.000s~30.000s	0.000s	${\swarrow}$
P07.15	DO2 ineffective delay time	0.000s~30.000s	0.000s	${\swarrow}$
P07.16	Relay 1 effective delay time	0.000s~30.000s	0.000s	*
P07.17	Relay 1 ineffective delay time	0.000s~30.000s	0.000s	*
P07.18	Relay 2 effective delay time	0.000s~30.000s <mark>relay 2 as option</mark>	0.000s	\$
P07.19	Relay 2 ineffective delay time	0.000s~30.000s <mark>relay 2 as option</mark>	0.000s	\$

	08 Group Digital output setting				
P08.00	Frequency detection value (FDT1)	0.00Hz \sim maximum frequency(P01.06)	50.00Hz	\$7	
P08.01	Frequency detection hysteresis 1	0.0%~100.0% FDT1	5.0%	X	
P08.02	Frequency detection value 2(FDT2)	0.00Hz \sim maximum frequency(P01.06)	50.00Hz	43	
P08.03	Frequency detection hysteresis 2	0.0%~100.0% FDT2(P08.02)	5.0%	\$	

FDT is used to check inverter output frequency,when output frequency is greater than frequency detection value,FDT effective,when output frequency is less than frequency detection value*(1- Frequency detection hysteresis),FDT ineffective;whenoutput frequency is between the above two,FDT output keep no change,following is FDT chart

	10 Group encoder type					
P10.01	Encoder type	 0: ABZ 1: ABZUVW 2: Rotary/resolver 3: sin/cos encoder Consult factory when need PG card 	0	*		
P10.02	Encoder line number	$1{\sim}65535$ Rotary pulse number: 1024× rotary pair of poles	1024	*		
P10.03	AB pulse direction	 0: forward, 1: reverse > If control mode is VC (with PG card)we can get this value by auto tuning for motor > We can run motor with open loop,and observe r10.12 and r27.00 if they are in the same direction,if not,then change this value 	0	*		
P10.07	Rotating ratio molecule between motor and encoder	1~65535	1000	*		
P10.08	Rotating ratio demonimator between motor and encoder	1~65535	1000	*		

When encoder is not installed on the motor rotor axis, asynchronous motor vector control with encoder is effective by setting motor and encoder rotating speed ratio (P10.07 and P10.08)

motor rotating speed = $\frac{P10.07}{P10.08}$ x encoder speed

For example: if motor rotating speed is 1500RPM and encoder speed 1000RPM, set P10.07=1500, P10.08=1000 $_{\circ}$

P10.09	Encoder offline detection time	0.0(not detecting) \sim 10.0s	2.0	*
P10.11	Encoder rotation filter time	$0{\sim}32$ speed loop control cycle	1	*
r10.12	encoder feedback rotating speed	 Current rotating speed by measuing, unit: 0.01Hz/1Rpm unit set by P21.17。 no symbolic number, Function code r27.02:Bit5 for direction; keypad indicator 【REV】 indicate direction 	-	•
r10.13	Encoder current position	$0\sim4^*$ encoder pulse number -1 encoder current position refer Z pulse as zero point,motor forward running and one cyle to Z pulse ,then postion to zero	-	•
r10.14	Z pulse marking value	0 \sim 4*encoder pulse number-1 (it is used to monitor encoder slipping and AB being disturbed)	-	•

11 Group Motor 1 Parameter							
		0: AC asynchronous motor					
r11.00	Motor type	1: Synchronous motor(Special software)	0	•			
		See appendix parameter					
P11.02	Motor rated power	 0.1kW~800.0kW when power is less than 1kw ,0.75kw set to 0.8 as per round up principle ,0.55kw motor set 0.6 when change motor rated power,AC drive will automatically set other parameter of 	Depend	*			
		motor name plate and motor model parameter be careful to use					
P11.03	Motor rated voltage	10V~2000V	Depend	*			
P11.04	Motor rated current	P11.02<30kW: 0.01A P11.02>=30kW: 0.1A	Depend	*			
P11.05	Motor rated frequency	1.00Hz~600.00Hz	50.00Hz	*			
P11.06	Motor rated RPM	1~60000rpm	Depend	*			
P11.07	Motor rated power factor	0.500~1.000	Depend	*			
r11.08	Motor rated torque	Read only,0.1Nm(P11.02<30KW); 1Nm(P11.02>30KW)	-	•			
r11.09	Number of motor 1 pairs of pole	Read only,It will auto calculate as per motor rated frequency and rated rotating speed	-	•			
P11.10	Auto-tune/self-learning	 0: no auto tuning 1: Stationary auto tuning of Asynchronous motor It is suitable in the cases when the motor can not de-couple form the load. The auto tuning for the motor parameter will impact the control accuracy. 2: dynamic or Rotational auto tuning of Asynchronous motor Comprehensive motor parameter autotune It is recommended to use rotation auto tuning when high control accuracy is needed. 	0	*			

1: Stationary auto tuning of Asynchronous motor

When do auto tuning ,motor stationary ,it can get parameter P11.11 $\ {\sim}\text{P11.13}_{\circ}$

Static self-learning can not learn all the motor parameters, so the control performance is difficult to achieve the best; if the motor nameplate information is incomplete, or the motor is not a 4-pole 50Hz GB motor, it is recommended to perform "rotation self-learning".

In the case of limited rotation, such as limited travel, limited load (crane), limited running direction, etc., static self-learning is used.

2: Rotatoinal auto tuning of Asynchronous motor

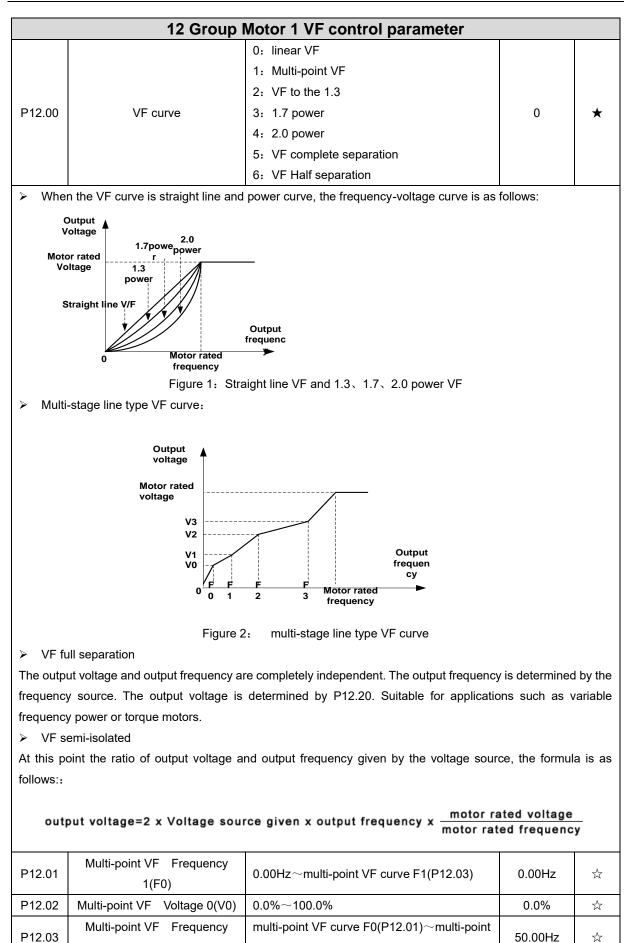
When do auto tuning ,motor first stationary and rotary, ,it can get parameter P11.11~P11.18, as to close loop contro,it can get P10.03 encoder directioin

When rotating self-learning, the motor will rotate forward and the speed can reach 50%~100% of the rated speed. The lighter the load during self-learning, the better the learning effect.

note:

Notice: it can do motor auto tune when command source is keypad

Please self-learn when the motor is cold. Make sure the motor is at rest before learning!


Please confirm that the motor nameplate parameters have been set before self-learning. For closed-loop control, you should also set the encoder parameters!

After setting this parameter, press the "**RUN**" button on the keyboard, the self-learning will start, and the inverter will stop itself after the self-learning is completed.

P11.11	Stator resistor of	Unit:0.001Ω(P11.02<30kW)	Depend	*
	Asynchronous motor	Unit:0.01mΩ(P11.02>=30kW)		
P11.12	Rotor resistor of	Unit:0.001Ω(P11.02<30kW)	Depend	+
	Asychronous motor	Unit:0.01mΩ(P11.02>=30kW)		*
P11.13	Leakage inductance of	Unit:0.01mH(P11.02<30kW)	Depend	Ŧ
	Asychronous motor	Unit:0.001mH(P11.02>=30kW)		*
P11.14	Mutual inductance of	Unit:0.1mH(P11.02<30kW)	Depend	*
	Asynchronous motor	Unit:0.01mH(P11.02>=30kW)		
P11.15	No-load excitation current of	Unit:0.01AP11.02(<30kW)	Depend	*
	Asynchronous motor	Unit:0.1A(P11.02>=30kW)		
P11.16	Excitation saturation factor 1	At non rated-excitation status	1.100	*
P11.17	Excitation saturation factor 2	At non rated-excitation status	0.900	*
P11.18	Excitation saturation factor3	At non rated-excitation status	0.800	*

100.0%

☆

VF curve F2(P12.05)

0.0%~100.0%

1(F1)

Multi-point VF Voltage 1(V1)

P12.04

P12.05	Multi-point VF Frequency	multi-point VF curve F1(P12.03) \sim multi-point	50.00Hz	☆
P 12.05	1(F2)	VF curve F3(P12.08)	50.00HZ	X
P12.06	Multi-point VF Voltage 2(V2)	0.0%~100.0%	100.0%	χ
P12.07	Multi-point VF Frequency	multi-point VF curveF2(P12.05)~600.00Hz	50.00Hz	24
F 12.07	3(F3)		30.00HZ	X
P12.08	Multi-point VFVoltage 3(V3)	0.0%~100.0%	100.0%	Σ_{γ}
P12.09	Torque boost	0% \sim 200% 0% is automatic torque boost	0%	Σ_{γ}

Automatic torque boost

When P12.09=0=Automatic torque boost, inverter will automatically compensate output voltage to improve torque in low frequency as per actual load , it is useful for linear VF curve

Manual torque boost

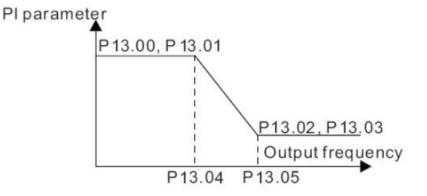
When P12.09 not 0,it means manual torque output.Output frequency 0 torque increasing value=p12.09*motor stator resistance *rated excitation current, increasing value will be gradully decreased as frequency increase, if higher than 50% of motor rated frequency, increasing value will be zero

> Notice:manual torque boost is useful to linear and power curve

		1		
P12.11	Slip compensation gain	 0~200% It is used to compensate the speed drop of the asynchronous motor VF control with load, and improve the speed control accuracy. Please adjust according to the following principles: Increase the setting when the motor speed is lower than the target value with loading. Reduce this setting when the motor speed is higher than the target value with loading, 	100%	*
P12.12	Slip compensation filter time	 0.01s~10.00s It is used to adjust the speed and stability of the VF control response to the load. Decrease this setting when the load response is slow. Increase this setting when the speed is unstable 	1.00s	Å
P12.13	Oscillation suppression gains	$0\sim$ 2000 In the SVPWM control mode, current fluctuation may occur to the motor on some frequency, especially the motor with big power. The motor can not run stably or overcurrent may occur. These phenomena can be canceled by adjusting thisparameter.	300	**
P12.14	Oscillation suppression effective frequency range	Oscillation suppression effective range :100%~1200% Set the range of the oscillation suppression function, 100% corresponds to the rated	110%	\$

		frequency of the motor		
P12.15	Current limit function selection	 0: ineffective 1: only adjust output voltage(Current limiting for general VF separation) 2: adjust output frequency 	2	*
P12.16	Current limit level	20% \sim 180% drive rated current	150%	\$
P12.17	Weak magnetic zone current limit factor	optimize dynamic performance of Weak magnetic zone,10% \sim 100%	0.60	25
P12.20	Voltage source for VF separation	 0: digital setting 1: Al1 2: Al2 3: Al3(IO expansion board) 4: Al4(IO expansion board) 5: HDI 6: Reserved 7: communication 8: PID 	0	*
P12.21	Digital setting for VF separation voltage	0.0%~100.0%	0.0%	25
P12.22	VF separation voltage Accel and Decel time	0.00s~60.00s	1.00s	X
P12.23	VF Separation voltage rates as per time	VF Separation Voltage variation every hour range:-100.00%~100.00%	0.0%	X

	13 Group Motor 1 vector control			
P13.00	Speed Proportional Gain ASR_P1	0.1~100.0	12.0	☆
P13.01	Speed Integral Time constant ASR_T1	0.001s~30.000s	0.200s	☆
P13.02	Speed Proportional Gain ASR_P2	0.1~100.0	10.0	☆
P13.03	Speed Integral Time constant ASR_T1	0.001s~30.000s	0.500s	☆
P13.04	ASR parameter Switching frequency 1	0.00Hz \sim ASR switching frequency 2(P13.05)	5.00Hz	☆
P13.05	ASR parameter Switching frequency 2	ASR switching frequency 1 \sim 600.00Hz(P13.04)	10.00Hz	☆


By setting the speed factor and integration time of the speed regulator, you can adjust

Section vector controlled speed loop dynamic response characteristics. Increase the proportional gain and reduce

The integration time can speed up the dynamic response of the speed loop, but the proportional gain is too large

Or the integration time is too small, it is easy to cause the system to oscillate, and the overshoot is too large. Proportion increase

Too small is also likely to cause steady-state oscillations of the system, and there may be a speed difference.

PI has a close relationship with the inertia of the system. Adjust on the base of PI according to different loads to meet various demands.

P13.00 and P13.01 are Speed adjuster parameter for low-speed use,scope of action from zero to P13.04 P13.02 and P13.03 are Speed adjuster parameter for high-speed use,scope of action from P13.05 to maximum frequency

P13.04-P13.05 Two sets of parameter for linear tansitions

		Unit's digit: Electric torque limit source		
		0:Digital setting		
		1:Ai1		
D12.00	Speed control torque limit	2:Ai2	00	-
P13.06	source selection	3:AI3((IO expansion board)	00	★
		4:AI4(IO expansion board)		
		5: HDI		
		6:Communication		

		Ten'unit: Electric torque limit source		
		Same as unit'digit		
P13.07	Electric torque limit	0.0%~300.0%	160.0%	Σ_{γ}
P13.08	Upper limit of brake torque	0.0%~300.0%	160.0%	Σ_{γ}
P13.12	Torque current directives filter time	Unit: current loop adjust cycle ,0 \sim 100	2	\$
P13.13	ACR Proportional Gain1	0.01~1000	300	<mark>Σ</mark> γ
P13.14	ACR Integral Time1	0.01~300.00ms	10.00ms	Σ_{γ}
P13.15	ACR Proportional Gain2	0.01~1000	300	⊰ ≭
P13.16	ACR Integral Time2	0.01~300.00ms	10.00ms	Σ

ACR: Automatic current regulator.

ACR parameters adjust the PI adjustment parameter of the current loop which affects the dynamic response speed and control accuracy directly. Generally, users do not need to change the default value; Only apply to the vector control mode without PG card (P00.04=0).

P13.17	Voltage feedforward Gain	$0{\sim}100$ improve the dynamic response of vector control,	0	*
P13.19	Voltage margin	$0.0\%{\sim}50.0\%$ improve the dynamic response of weak magnetic curvature.	<mark>3%</mark>	\$7
P13.20	Flux weakening adjuster integral time	0.001s-5.000s	<mark>0.010</mark> s	\$7
P13.21	Proportional gain of field weakening regulator	0.000~2.000	<mark>0.100</mark>	\$7
P13.22	Slip compensation	50%-200% For sensorless vector control, this parameter is used to adjust the speed stabilizing precision of the motor. When the speed is too low due to heavy load of motor, this parameter needs to be enlarged, vice versa.	100%	Å
P13.23	SVC zero speed directives	0:No action 1:Output DC current	0	*

14 Group Torque control					
P14.00	Torque control input	 0: Digital setting(P14.01) 1: Al1 2: Al2 3: Al3(IO expansion board) 	0	*	
	source	 4: Al4(IO expansion board) 5: HDI 6: Communication 			
P14.01	Torque digital setting	$-200.0 \sim 200.0\%$ The torque reference greater than 0 indicates that the direction of the torque is the same as the forward direction of the motor; less than 0 indicates that the direction of the torque is the same as the reverse direction of the motor.	0	Å	
P14.02	Maximum torque	Benchmark 10.0%~300.0% Notice:It is torque benchmarks as torque reference for analog inputs and high frequency pulse input also it is the ultimate output torque during torque control.	200.0%	*	
P14.03	Torque Acceleration time	0.000s~60.000s Notice:Torque reference time from zero to motor rated torque	0.100s	Å	
P14.04	Torque control Deceleration time	0.000s~60.000s Notice:Torque given time from motor rated torque to zero	0.100s	\$	
P14.05	Speed limit source	Units: speed limit source selection 0: Digital setting (P14.06) 1: Al1 2: Al2 3: Al3 (expansion card) 4: Al4 (expansion card) 5: HDI 6: Communication Ten's place: speed limit source symbol 0: unsigned 1: Signed	0	*	
P14.06	Digital setting of forward speed limit value	Relative to the maximum frequency: 0.00%~ 100.00%	<mark>100.0%</mark>	X	
P14.07	Digital setting of reverse speed limit value	Relative to maximum frequency: 0.0% \sim 100.0%	<mark>100.0%</mark>	X	
P14.08	Torque setting over limit speed	 0: Symmetrical torque command After the motor speed exceeds the speed limit value, the torque input source sets the absolute value of the torque reference, and the direction of the torque is always the braking force. 1: Enter speed mode After the motor speed exceeds the speed limit 	0	*	

	will limit the speed to within the speed limit value		
	as much as possible.		
Static friction torque	0.0%~50.0%	10.0%	${\leftrightarrow}$
	0.00Hz~50.00Hz		
Otatia friation tannua	It is used to overcome the static friction force at		
·	the start, and the speed is higher than P14.11	1.00Hz	*
compensation	and the static friction torque compensation is		
	cancelled.		
	0.0%~50.0%		
	Dynamic friction at rated speed	0.0%	
Dynamic friction factor		0.0%	$\stackrel{\wedge}{\simeq}$
Dynamic friction starting			
value	0.0%~50.0%	0.0%	$\stackrel{\frown}{\simeq}$
Torque control upper limit			
frequency acceleration	0.00~655.35	<mark>0.00</mark>	<mark>☆</mark>
time			
Torque control upper limit			
frequency deceleration	0.00~655.35	<mark>0.00</mark>	☆
time			
	Static friction torque compensation Dynamic friction factor Dynamic friction starting value Torque control upper limit frequency acceleration time Torque control upper limit	Static friction torque0.0%~50.0%Static friction torque compensation0.00Hz~50.00HzIt is used to overcome the static friction force at the start, and the speed is higher than P14.11 and the static friction torque compensation is cancelled.Dynamic friction factor0.0%~50.0% Dynamic friction at rated speed Notice: motor sliding friction torque at rated rotating speedDynamic friction starting value0.0%~50.0% 0.0%~50.0%Torque control upper limit frequency acceleration lime0.00~655.35Torque control upper limit frequency deceleration0.00~655.35	will limit the speed to within the speed limit value as much as possible.10.0%Static friction torque0.0%~50.0%10.0%Static friction torque compensation0.00Hz~50.00Hz1.00HzIt is used to overcome the static friction force at the start, and the speed is higher than P14.11 and the static friction torque compensation is cancelled.1.00HzDynamic friction factor0.0%~50.0%0.0%Dynamic friction factor0.0%~50.0%0.0%Dynamic friction starting value0.0%~50.0%0.0%Dynamic friction starting value0.0%~50.0%0.0%Torque control upper limit frequency acceleration0.0%~50.5350.0%Torque control upper limit frequency deceleration0.00~655.350.00

	16 Group Energy saving control				
r16.00	Electricity meter count (32BIT)	Unit:KW/H	-	•	
r16.02	Output power	Unit:0.1kw,output power will be negative in regen state	-	•	
r16.03	Power factor	-1.000~1.000	-	•	
P16.04	Electricity meter zero clearing	0:no function;1111: clear to zero	0	☆	
P16.05	Energy saving control	0: disable 1: enable	0	*	
P16.06	Energy saving voltage limit	0%~50%(0% means Energy saving control disable and more than 0% means Energy saving control enable	0%	\$	
P16.07	Energy saving filter time	0.0~10.0s	2.0s	☆	

Notice:P16.05 is invisible(it is useful in vf control) and When energy saving enabled, the output current can be reduced and thepower loss can be reduced when the load is light.For example, the fan and pump is light loaded, most of the inverters do not have this function, so we are more energy efficient. Energy savings can be achieved when it is light loads or load changes so slow

20 Group User-defined function code menu				
P20.00	User-defined function code 0		00.00	☆
P20.01	User-defined function code 1		00.00	☆
P20.02	User-defined function code 2		00.00	☆
P20.03	User-defined function code 3		00.00	\$
P20.04	User-defined function code		00.00	\$
P20.05	User-defined function code 5		00.00	\$
P20.06	User-defined function code 6		00.00	\$
P20.07	User-defined function code 7		00.00	☆
P20.08	User-defined function code 8		00.00	
P20.09	User-defined function code 9		00.00	${\leftrightarrow}$
P20.10	User-defined function code 10	The value is the function code number, ranging from 00.00 to 63.99.	00.00	☆
P20.11	User-defined function code	Example: If you want to display P03.01 and	00.00	☆
P20.12	User-defined function code 12	P13.00 in the user-defined menu mode (- USr-), set P20.00=03.01, P20.01=13.00	00.00	☆
P20.13	User-defined function code 13		00.00	☆
P20.14	User-defined function code 14		00.00	${\leftrightarrow}$
P20.15	User-defined function code 15		00.00	\$
P20.16	User-defined function code 16		00.00	\$
P20.17	User-defined function code 17		00.00	☆
P20.18	User-defined function code 18		00.00	☆
P20.19	User-defined function code 19		00.00	☆
P20.20	User-defined function code 20		00.00	☆
P20.21	User-defined function code 21		00.00	\$

P20.22	User-defined function code 22		00.00	☆
P20.23	User-defined function code 23		00.00	☆
P20.24	User-defined function code 24		00.00	☆
P20.25	User-defined function code 25		00.00	☆
P20.26	User-defined function code 26	The value is the function code number, ranging from 00.00 to 63.99.	00.00	☆
P20.27	User-defined function code 27		00.00	☆
P20.28	User-defined function code 28		00.00	☆
P20.29	User-defined function code 29		00.00	☆
P20.30	User-defined function code 30		00.00	☆
P20.31	User-defined function code 31	Example: If you want to display P03.01 and	00.00	☆
P20.32	User-defined function code 32	P13.00 in the user-defined menu mode (- USr-), set P20.00=03.01, P20.01=13.00	00.00	☆
P20.33	User-defined function code 33		00.00	☆
P20.34	User-defined function code 34		00.00	☆
P20.35	User-defined function code 35		00.00	☆
P20.36	User-defined function code 36		00.00	☆
P20.37	User-defined function code 37		00.00	☆
P20.38	User-defined function code 38		00.00	☆
P20.38	User-defined function code 39		00.00	☆
P20.39	User-defined function code 39		00.00	\$

	21 Group Keypad and Display Group				
P21.00	Keyboard UP/DOWN function	Units: UP/DOWN enable selection 0: Disable 1: Enable Ten'unit: clear selection 0: Cleared in non- operational state 1: Not cleared Hundred's unit: Power-down memory selection 0: no memory 1: memory Thousand's unit: rate selection 0: automatic rate 1: P01.39 rate 0: no function; 1: Forward Jog	<mark>0111</mark>	*	
P21.02	MK function option	 2: Reverse Jog; 3: Forward/reverse Switch 4: Quick stop; 5: coast to stop 6: Curse left shift(LCD keypad) 	1	*	
P21.03	STOP function	0:Valid only at Keypad Control 1:valid at all command Channels	1	☆	
P21.04	Monitoring display1	00.00~99.99	27.00	$\overrightarrow{\alpha}$	
P21.05	Monitoring display2	00.00~99.99	27.01	$\stackrel{\wedge}{\simeq}$	
P21.06	Monitoring display3	00.00~99.99	27.06	\$	
P21.07	Monitoring display4	00.00~99.99	27.05	X	
P21.08	Monitoring display5	00.00~99.99	27.03	Σ_{γ}	
P21.09	Monitoring display6	00.00~99.99	27.08	X	
P21.10	Monitoring display7	00.00~99.99	06.00	X	
P21.11	Running status Monitoring display parameter option	Unit'digit to Thousand'digit set 1-4 monitor parameter 0 means no display, $1 \sim 7$ corresponds to monitor parameter $1 \sim 7$ Unit'digit: choose first monitoring data, $0 \sim 7$ Ten's digit: choose second monitoring data, $0 \sim 7$ Hundred's digit: choose third monitoring data, $0 \sim 7$ Thousand's digit: choose fourth monitoring display, $0 \sim 7$	5321	\$	
P21.22	Stop status Monitoring display parameter option	Same as P21.11	0052	☆	
running s 【SHIFT Encounte Take the	status and monitoring variables key on the keyboard to swi ered "0" then skip, cycle monitor shutdown monitoring interface	ng interface supports up to 4 monitoring volume. Mo s in stop status are set by P21.11 and P21.12, respe tch the monitoring volume from low to high of P21.1 oring. e for example, P21.12 = 0052, there are 2 monitoring 2, P21.05 = 27.01) and r27.03 (monitor display para	ctively. Press 1 or P21.12, g variables, wh	nich are	

27.03), press the **[SHIFT]** key on the keyboard to switch between the two monitors, as shown below. Example of monitoring interface (stop) P21.12 = 0052skip when >> >> meet 0 To monitor Monitor display Monitor display display parameter parameter 2 parameter 5 2 The rules for running the monitoring interface are the same as the shutdown monitoring interface, and will not be repeated Unit's digit: quick editing function selection 0: invalid 1: Numeric frequency setting 2: Numeric torque setting 3: PID digital setting 0 Note: The quick editing function means that if the current monitoring value is the output frequency or command frequency under the monitoring status, press the [ENTER] key to enter the parameter editing interface directly. The edited parameters are set by the ones digit of this function code. Ten's digit: monitor pointer reset selection Digital keypad P21.13 0: When the display status is in the monitoring 01 ★ personalized setting status from other status, or when the running monitoring status and stop monitoring status are switched, the previously recorded monitoring pointer position will be restored. 1: When the display status is in the monitoring status by other status, or when the monitoring status of running status and stop status are switched, the monitor pointer will be reset to the ones of P21.11 or P21.12. Note: when power-on, the shutdown monitoring pointer points to the P21.12 bits, the operation monitoring pointer points to P21.11 bits 0.001~65.000 30.000 P21.14 Load speed display factor $\stackrel{}{\simeq}$ Load speed decimal point P21.15 0~3 0 ☆ digit Load speed =P27.00*P21.10 r21.16 Load speed display _ • Decimal point digit defined by P21.11 0: 0.01Hz; 1:1Rpm P21.17 Speed display unit Display unit for selecting P00.07, r27.00, 0 \geq ★ r27.01, r10.12

22 Group AC drive data and configuration					
		Depend on drives power			
		≤7.5kW: 1kHz∼12.0kHz			
		11kW~45kW: 1kHz~8kHz			
		≥55kw: 1kHz∼4kHz			
		The carrier frequency can be reduced when it			
		came like following phenomenon:			
		1 The leakage current generated by the			
		inverter is large			
P22.00	Carrier/swithcing frequency	2 The interference generated by the inverter	Depend	$\stackrel{\wedge}{\simeq}$	
		has an impact on peripheral devices			
		3 Long wiring distance between inverter and			
		motor			
		The carrier frequency can be increased			
		whenwhen it came like following			
		phenomenon:			
		1 The electromagnetic noise generated by			
		the motor is large			
Carrier fre	equency will affect the noise of m	notor and the EMI of inverter.			

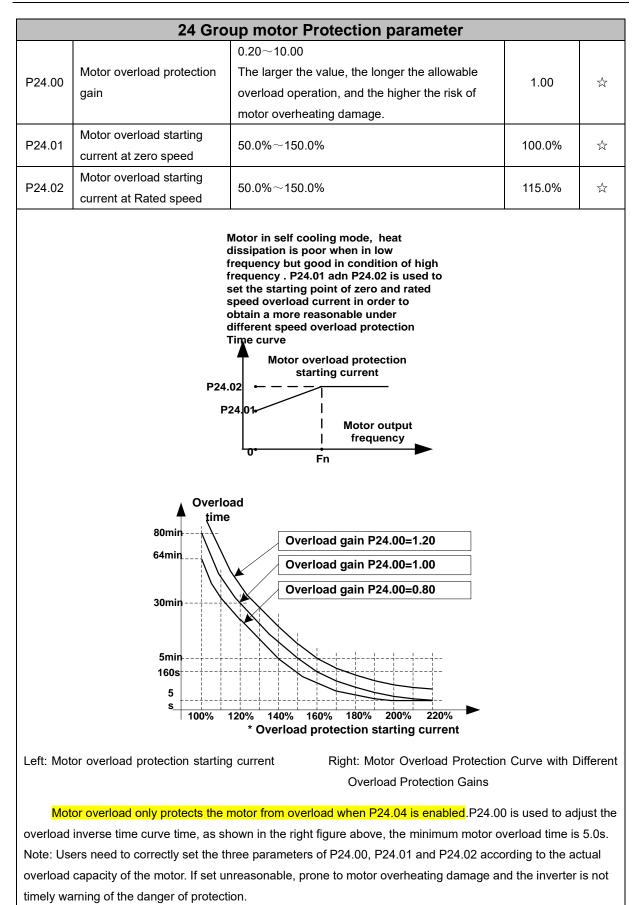
If the carrier frequency is increased, it will cause better current wave, less harmonic current and lower noise of motor.

Notice:

The factory default is optimal in most cases. Modification of this parameter is not recommended. If the carrier frequency exceeds the factory default, the inverter must be derated because the higher carrier frequency will cause more switching loss, higher temperature rise of inverter and stronger electromagnetic interference.

If the carrier frequency is lower than the factory default, it is possible to cause less output torque of motor and more harmonic current.

P22.01	Carrier frequency adjustment	Unit'digit: adjustment as per Rotation 0:No; 1:Yes Ten'digit: adjustment as per Temperature 0 no; 1: yes The inverter can automatically adjust the carrier frequency according to its temperature. This function can reduce the possibility of overheat alarm of the inverter.	00	*
P22.02	Low speed carrier frequency	1.0kHz~15.0kHz	Depend	☆
P22.03	High speed carrier frequency	1.0kHz~15.0kHz	Depend	\overleftrightarrow
P22.04	Carrier frequency switching point 1	0.00Hz~600.00HzWhen the carrier frequency is adjusted according to the output frequency, the carrier frequency set by P22.02 is used when the output frequency is lower than this set value.	10.00Hz	\$


P22.05 Carrier frequency switching point2 0.00Hz~600.00Hz When the carrier frequency is adjusted according to the output frequency is adjusted according to the output frequency set by P22.03 is used when the output frequency is higher than this set value. 50.00Hz ☆ 0: SVPWM 0: SVPWM 50.00Hz ↓	P22.05 Carrier
P22.05 Carrier frequency switching point2 frequency, the carrier frequency set by P22.03 is used when the output frequency is higher than this set value. 50.00Hz ☆	P22.05 Carrier
P22.05 point2 frequency, the carrier frequency set by 50.00Hz ☆ P22.03 is used when the output frequency is higher than this set value. higher than this set value. 50.00Hz ☆	P22.05
P22.03 is used when the output frequency is higher than this set value.	
It is normally used	
1: SVPWM+DPWM	
Using this modulation method can reduce the	
switching loss of the inverter and reduce the	
probability of overheating alarm of the	
P22.06 PWM modulation method inverter; however, the electromagnetic noise 0	P22.06 PWM
of the motor in the medium speed section will	
be too large.	
2: PWM at random	
The electromagnetic noise generated by the	
motor is white noise, not a sharp squeak.	
3: SPWM	
It is only used in special situation	
10%~100%(modulation percentage)	
P22.07 DPWM switching point When P22.06 is set to 1, increasing this 30%	P22.07 DPW
setting vaule can reduce the electromagnetic	
noise in the middle speed section.	
<mark>100%-110%</mark>	
It is used to define the duty cycle of the	
P22.08 Modulating limit inverter side IGBT. Overmodulation is allowed 105%	P22.08
when it is set to 100% or more, and the	
allowable overmodulation is deepened when	
the set value is increased from 101 to 110.	
0:diabled	
1:enabled	
P22.10AVR functionWhen the AVR function is enabled, the effect1	P22.10
of the DC bus voltage change on the output	
voltage can be eliminated.	
0-Disabled	
1-Enabled	
Energy braking voltage 2-only enable when ramp to stop P22.11 1	P22.11 Ener
funtion This parameter is only used to control the	
built-in brake unit. For models without a built-	
in brake unit, this setting can be ignored.	
320V~400V(220V level)	
P22.12 Energy braking voltage 600V~800V(380V level) Depend	P22.12 Fner
690V~900V(480V level)	
950V~1250V(690V level)	
0:No Operation	
P22.13Output phase switch1:Output phase switch0★	P22.13 Out
(equal to change Phase between V and	

		W,For closed loop control, you need to re- rotate the self-learning to confirm the encoder direction)		
P22.14	Cooling method (fan control)	0:Effective when running 1:Forced control(effective when power on) 2:Adjustable as per drive temperature	0	\$
P22.15	G/P drive type	 0-G type;1-P type G means normal duty (constant torque load) P means light duty such as fan and pump 	0	*
r22.16	Drive rated power	Read only Unit:0.1kw	-	•
r22.17	Drive rated Voltage	Read only Unit:V	-	•
r22.18	Drive rated current	Read only Unit:0.1A	-	•
P22.20	Trial time setting	After this time, the inverter will stop and report Er.TTA fault; if set to 0, it will be cancelled. Note: This parameter needs agency authority to be able to see	D	☆

	23 Group	Drive protection function setting		
P23.00	DC Bus voltage control option	 Unit'digit :Overvoltage stall control 0:overvoltage stall disabled 1:overvoltage stall enabled 2:overvoltage stall enabled self-adjustable The over-voltage stall function limits the amount of power generated by the motor by extending the deceleration time or even increasing the speed, avoiding over-voltage on the DC side and reporting over-voltage faults Ten'unit:Undervoltage stall control 0:undervoltage stall disabled 1:Undervoltage stall disabled 1:Undervoltage stall(decelerate to zero speed and be in standby mode,after power restoring ,it will run again automatically) 2: Undervoltage stall deceleration(decelerate to zero and stop) The undervoltage stall function reduces the motor power consumption or reduces the power consumption of the motor or turns it into a power generation operation to avoid the undervoltage stall function is used when the input power supply quality is poor (the power supply voltage fluctuates downward or the sporadic short power is suspended), and it is necessary to keep the inverter running as much as possible. 	01	*
P23.01	Overvoltage stall threshold	220V Level: 320V~400V 380V Level: 540V~800V 480V Level: 650V~950V	Depend	*
P23.02	Undervoltage threshold	220V level: 160V∼300V 380V level: 350V∼520V 480V level: 400V∼650V	Depend	*
P23.03	Overvoltage stall ratio	0~10.0	1.0	X5
P23.04	Undervoltage stall ratio	0~20.0	4.0	\$7
P23.05	Undervoltage trip threshold	220V Level:160V~300V 380V Level:350V~520V 480V Level:400V~650V	Depend	*
P23.06	Undervoltage fault detecting time	0.0s~30.0s	1.0s	$\stackrel{\wedge}{\sim}$
P23.06	° °	0.0s~30.0s Unit's digit: Wave-by-wave current limit enable 0: invalid; 1: valid Ten's digit short to ground enable bit 0: invalid; 1: valid	1.0s	☆ ★

	value			
P23.11	Over-speed detection time	0.0s \sim 30.0s0.: shielding	1.0s	☆
P23.12	Detection value of too large speed deviation	0.0% \sim 100.0%(motor rated frequency)	20.0%	☆
P23.13	Detection value of too large speed deviation	0.0s~30.0s 0.0: shielding	0.0s	☆
P23.14	Input phase loss detection time	0.0s~30.0s 0.0: forbidden	8.0s	☆
P23.15	Output phase loss inbalance detecting	0%~100%	30%	☆
P23.18	Fault protection action selection 1	Unit's digit : input phase loss 0: coast to stop 1: Emergent stop 2: Stop as per stop mode 3: Continue to Run Ten'unit: user self-defined fault 1 same as Unit's digit Hundred'unit: user self-defined fault 2 same as Unit'digit Thousand's unit: communication fault same as unit's digit	0000	*
P23.19	Fault protection action selection 2	Unit's digit: motor overload 0: Coast to stop 1: Emergent stop 2: Stop as per stop mode 3: Continue to run Ten'unit: motor overheat same as unit'digit Hundred'unit: too large speed deviation same as unit'digit Thousand's unit: motor over speed same as Unit'digit	0000	ŵ
P23.20	Fault protection action selection 3	Unit's digit: PID feedback lost during running 0: Coast to stop 1: Fast stop 2: Stop as per stop mode 3: Continue to run Ten'unit: Reserved same as unit'digit Hundred'unit: reserved same as unit'digit thousand'unit: reserved same as unit'digit	0000	*
P23.21	Fault protection action selection 4	Unit's digit: output phase loss 0: Coast to stop 1: Fast stop	0000	☆

				1 1
		2: Stop as per stop mode		
		Ten'unit: EEPROM fault		
		0: Coast to stop		
		1: Fast stop		
		2: Stop as per stop mode		
		3: Continue to run		
		Hundred's unit: PG card fault(reserved)		
		0: Coast to stop		
		1: Fast stop		
		2: Stop as per stop mode		
		3: Continue to run		
		Thousand's unit: off load fault		
		0: Coast to stop		
		1: Fast stop		
		2: Stop as per stop mode		
		3: Continue to run		
		Define as per bit:		
		bit0-undervoltage;bit1- inverter overload		
P23.24	Fault reset		0	\$
FZ3.24	Fault leset	bit2-inverter overheat ;bit3-motor overload	U	×
		bit4-motor overheat;bit5-user'fault 1		
		bit6- user'fault 2; bit7~15 reserved		
		Define as per bit:		
		bit0-overcurrent during acceleration;bit1-		
		overcurrent during deceleration		
		bit2-overcurrent during constant speed;bit3-over		
		voltage during acceleration		
P23.25	Fault source for auto reset	bit4-overvoltage during deceleratoin;bit5-	0	$\overset{\sim}{\sim}$
00		overvoltage during	C C	
		bit6-inverter undervoltage;bit7-input phase loss		
		bit8-inverter overload;bit9-inverter overheat		
		bit10-motor overload;bit11-motor overheat		
		bit12-user'fault 1;bit13-user'fault 2		
		bit14-Reserved;bit15-Reserved		
P23.26	Fault auto Reset times	0~99	0	\$
D00.07	Numberic output Action at	0:Disabled		
P23.27	fault reset	1:Enabled	0	\overleftrightarrow
D 00.00	Interval time of fault auto		<u> </u>	*
P23.28	reset	0.1s~300.0s	0.5s	X
	Fault auto reset times			
P23.29	clearing time	0.1s~3600.0s	10.0s	☆
	Continuing Running	0: Run at the set frequency		
P23.30	frequency selection when trip	1: Run at abnormal standby frequency	0	☆
	Abnormal back-up			
P23.31	frequency	0.00Hz∼maximum frequency	2.0HZ	Å

P24.03	Motor overload warning factor	50%~100%, When the overload accumulation degree is greater than this value, the P07 group DO terminal output function code"26"(Motor overload warning) is selected and output valid signal	<mark>80%</mark>	¢
P24.04	Motor protection option	Unit'digit:Motor 1 protection selection 0:Turn off software overload protection 1:Enable software overload protection Ten's digit:Motor 2 protection selection 0:Turn off software overload protection 1:Enable software overload protection	11	☆

Default inverter is —no motor temperature protection. To enable this protection, please confirm that present motor has a temperature sensor. (PTC means motor sensor,PTC1000 and PTC100 is different motor sensor type.if your motor have temperature sensor,you need to use our special card to connect PTC1000 or PTC100) and set temperature sensor type (P24.08) to start motor overheating protection.User can view present motor temperature through function code R27.07; if motor temperature is greater than motor overheating alarming threshold (P24.10), numeric output terminal —25: Motor Overload alarmingis enabled and this signal is used for instruction; if motor temperature is greater than motor overheating protection threshold (P24.09), inverter will give an alarm about motor overheating fault (Er. oH3) and start corresponding protection action.

★ Motor overheating fault (Er. oH3) can not be reset immediately until motor temperature drops to a value far below the protection threshold

P24.08	Motor temperature sensor type	0:no 1:PT100 2:PT1000 3: KTY84-130	D	×
P24.09	Motor overheat fault threshold	0.0°C~200.0°C	<mark>120.0℃</mark>	☆
P24.10	Motor overheat warning threshold	0.0° C~200.0° C When the motor temperature detected by the temperature sensor is greater than this value, the DO terminal output function of function "27: Motor over temperature warning" is selected.	90.0℃	*
r24.11	Motor temperature read data	Unit 0.1℃ Display the motor temperature detected by the temperature sensor	-	•
P24.12	Off load protection	0:effective 1:ineffective	0	\Rightarrow
P24.13	Off load detection level	0.0%-100%	10.0%	\$
P24.14	Off load detection time	0.000s-60.000s	1.000s	☆

Off load=unload

If output current is lower than offload detection level (P24.13) and this status continues for offload detection time (P24.14) when offload detection protection is enabled (P24.12=1)

and inverter is in running mode and not in DC brake, then inverter gives an offload

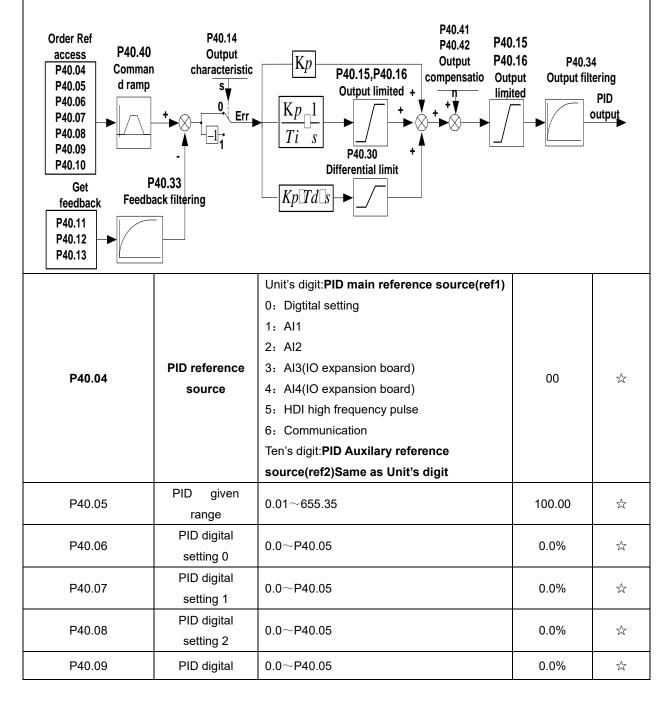
protection fault (Er. LL) report and stops as the offload protection setting (P24.12)

	25 Gro	up Fault tracking parameter		
	Current fault	- see detail chapter 6 fault diagnosis and		
r25.00	type	solution	-	•
	Output			
r25.01	frequency at	Unit:0.01Hz	-	•
	fault			
	Output current			
r25.02	at fault	Unit:0.1A	-	•
	Bus voltage at			
r25.03	fault	Unit:V	-	•
	Running mode			
r25.04	status 1at fault	- see Parameter r27.10 in detail	-	•
	Input terminal	Bit0 \sim Bit6 corresponds to DI1 \sim DI7		
r25.05	status at fault	Bit12 \sim Bit15 corresponds to VDI1 \sim VDI4	-	•
	Working time at			
r25.06	fault	Unit:0.01S	-	•
	Accumulated			
r25.07	working time at	Unit:hour	-	•
	fault			
	Frequency			
r25.08	source at fault	Unit:0.01hz	-	•
	Torque source at			
r25.09	fault	Unit:0.1% compared to motor rated torque	-	•
-05.40	Encoder speed	Unit:RPM		_
r25.10	at fault	UNICRPM	-	•
r25.11	Electrical angle	Unit: 0.1°		
125.11	at fault	Onit. 0.1		•
r25.12	Running mode	See Parameter r27.11 in detail		
125.12	status 2 1at fault	See Farameter 127.11 in detail	-	•
		Define as per unit, 0:ineffective, 1:effective		
		Bit0: DO1; Bit1: DO2		
r25.13	Input terminal	Bit2: relay; Bit3 (relay 2 as option)	_	•
120.10	status at fault	Bit4: DO3; Bit5: DO4		
		Bit6: DO5; Bit7: DO6		
		Bit8: VDO1; Bit9: VDO2		
	Heat sink			
r25.14	temperature at	Unit: 0.1°C	-	•
	fault			
r25.15	Low-level fault	For the fault type, see theChapter6Fault	-	•
		Diagnosis and Solution		
r25.16	Warning type	For the fault type, see theChapter6Fault	-	•
		Diagnosis and Solution		
		p Fault recording parameter		
r26.00	Last fault 1trip	SEE DETAILS IN CHAPTER 6	-	•
	type			
r26.01	Output	Unit:0.01Hz	-	•

	froguency et			
	frequency at fault			
r26.02	Output current at fault	Unit:0.1A	-	•
r26.03	Bus voltage at	11-34	-	•
	fault	Unit:V		
r26.04	Running mode	See Parameter r27.10	-	•
	status 1at fault			
r26.05	Input terminal	Bit0~Bit6 corresponds to DI1~DI7	-	•
	status at fault	Bit12~Bit15 corresponds to VDI1~VDI4		
r26.06	working time at	Unit:0.01S	-	•
	fault			
	Accumulated			
r26.07	working time	Unit:hour	-	•
	atfault			
r26.08	Last fault 2 trip		-	•
	type			
	Output			
r26.09	frequency at		-	•
	fault			
r26.10	Output current	Same as last fault description	_	•
120.10	at fault			
r26.11	Bus voltage at	_	_	•
120.11	fault	-	-	•
r26.12	Running mode		_	•
120.12	status 1at fault		-	•
r26.13	Input terminal	_		
120.15	status at fault		-	•
r26.14	Working time at			
120.14	fault		-	•
	Accumulated			
r26.15	working time at		-	•
	fault			
r26.16	Last fault 3 trip			
120.10	type			
	Output			
r26.17	frequency at		-	•
	fault	Same as last fault description		
-06.40	Output current			_
r26.18	at faul		-	•
00.40	Bus voltage at	-		
r26.19	fault		-	•
	Running mode	-		
r26.20	status 1at fault	-	-	•
	Input terminal	1		
r26.21	status at fault	-	-	•
	I	1	1	1

r26.22	Working time at		_	•
120.22	fault			-
	Accumulated			
r26.23	working time		-	•
	atfault			
	27 Gr	oup Monitoring parameter	T	Γ
r27.00	Running frequency	It can set unit as per Parameter P21.07	-	•
r27.01	Set frequency	It can set unit as per Parameter P21.07	-	•
r27.02	Direction indicator	Bit0: direction of the running frequency (0- positive direction; 1-negative direction, the same below) Bit1: Set the direction of the frequency Bit2: direction of the main frequency Bit3: direction of the secondary frequency Bit4: Direction of the UpDown offset Bit5: Direction of the encoder feedback frequency Reserved above Bit6	-	•
-07.00	Due veltere			
r27.03	Bus voltage	Unit: 1V	-	•
r27.04	VF separation setting	unit: 0.1%	-	•
r27.05	Output voltage	unit: 0.1V	-	•
r27.06	Output current	unit: 0.1A	-	•
r27.07	Output current percentage	unit: 0.1%(100% of motor rated current)	-	•
r27.08	Output torque	0.1%	-	•
r27.09	Torque setting	0.1%	-	•
r27.10	Drives running mode status 1	Bit0:Running status 0-Stop;1-Run Bit1:Motor direction0-Forward;1-Reverse Bit2:Ready signal:0-not ready;1-ready Bit3:fault status 0-no fault;1-fault Bit4~5:fault type:0-free stop;1-fast stop;2- stop as per stop mode; 3: continue to run Bit6:jog status:0-no jog;1-jog status Bit7:Auto tune :0-no;1-yes Bit8:DC braking:0-Non DC braking;1-DC braking Bit9:Reserved Bit10~11:Acceleration and Deceleration: 0:stop/zero output;1:speed up;2:slow down;3:constant speed Bit12:Warning status: 0:no warning; 1:warning Bit13:current limit status:0-no;1-yes	-	•

				1
		Bit14:overvoltage stalladjustment:0-no ;1-yes		
		Bit15:undervoltage stall adjustment :0-no;1-		
		yes		
		Bit0~1:current command source:0-		
		keypad;1-terminal ;2-communicatoin		
		Bit2~3:motor option:0-motor 1;1-motor 2		
r27.11	Drives running	Bit4~5:current motor control:0-VF;1-SVC;2-		
127.11	mode2	VC	-	•
		Bit6~7:current running mode:0-speed;1-		
		torque;2-position		
r27.12	Drives running	Reserved		•
	mode status 3		•	
r27.13	Drives running	Reserved		
127.15	mode status 4	<u>NUSCIVUU</u>		•
07.44	Accumulated			
<mark>r27.14</mark>	power on time	Unit:hour	•	•
	Accumulated		_	
<mark>r27.15</mark>	running time	Unit:hour		•
-07.46		Unit:min		
r27.16	Power-on time	Unichin		
r27.18	Heat sink	Unit:0.1 °C		•
	temperature		<u> </u>	
r27.19	Main frequency	Unit:0.01Hz	•	•
r27.20	Auxiliary	unit:0.01Hz		•
	frequency		<u> </u>	
r27.21	UpDown offset	unit:0.01Hz		
121.21	frequency		•	•
	30 Group M	odbus communication parameter		
	Communication	0:Modbus;		
P30.00	type	1:Canopen	0	*
	51	1~247		
		Different slaves on the same network should		
P30.01	Drive Address	set different local addresses;	1	_
F 30.01	Drive Address		I	
		0 is the broadcast address, all slave inverters		
		can be identified		
		0:1200 bps; 1:2400 bps		
P30.02	Modbus baud	2:4800 bps; 3:9600 bps	3	*
	rate	4:19200 bps; 5:38400 bps	-	
		6:57600 bps; 7:115200 bps		
		0: 1-8-N-1		
		(1 start bit +8 data bits +1 stop bits)		
		1: 1-8-E-1		
	Modbus data	(1start bit +8 data bits +1 even parity +1 stop		
P30.03	format	bit)	0	*
		2: 1-8-0-1		
		(1 star bit+8 data bits +1odd parity+1 stop		
		bits)		


		3: 1-8-N-2		
		(1 star bit+8 data bits+2 stop bits)		
		4: 1-8-E-2		
		(1 star bits+8 data bit+1 even parity+2 stop		
		bits)		
		5: 1-8-0-2		
		(1 start bit +8 data bits+1 odd parity+2 stop		
		bits)		
P30.04	Modbus	1 \sim 20msThe delay time of the local to answer	2ms	_
F 30.04	response delay	the master	21115	*
		0.0s(disabled) \sim 60.0s(works for master-slave		
	Modbus	system) When this function code effective,if		
P30.05	overtime	slave do not receive data from master	0.0s	*
		overtime,it will trip as Er.485		
	Number of			
	frames	Each time a frame is received, this value is		
r30.06	received by	incremented by 1,0 to 65535 cycles.	-	•
	Modbus	incremented by 1,0 to 00000 cycles.		
	Number of			
r30.07	frames that	Each time a frame is sent, this value is	-	•
	Modbus has	incremented by 1,0 to 65,536 cycles.		
	sent			
	Number of error	Each time an CRC error frame is received,		
r30.08	frames	this value is incremented by 1,0 to 65535	-	•
100.00	received by	cycles; it can be used to judge the degree of		
	Modbus	communication interference.		
	Modbus	0: Slave		
P30.09	master-slave		0	*
	option	1: Master(sent by broadcast)		
	Slave memory			
P30.10	when inverter	1 \sim 9 corresponds to 0x7001 \sim 0x7009	1	$\stackrel{\wedge}{\simeq}$
	as master			
		0:output frequency		
		1:set frequency		
		2:output torque		
P30.11	Data sent by	3:set torque	0	Δ
1 30.11	Master		Ŭ	~
		4:PID setting		
		5:PID feedback		
		6:output current		
	Sending	0.010 \sim 10.000sAs a master, after sending		
P30.12	interval of	one frame of data, the next frame of data is	0.1s	\overleftrightarrow
	Master	sent after this delay.		
	Receiving	-10.000 \sim 10.000The values of slave registers		
P30.13	proportaionality	0x7001 and 0x7002 take effect after passing	1.00	☆
	factor of slave	through this scaling factor		
	Communication	0: 0.01%	^	*
P30.14	special register	1: 0.01Hz	0	$\stackrel{\sim}{\sim}$
		1	1	

	anaad unit	2. 1Dom		
	speed unit	2: 1Rpm		
		Some units of specific communication		
		registers can be set by this parameter. See		
		Appendix A for details.		
		When the format of the received frame is a		
		write register, this parameter can be set to		
	Modbus	reply to the host.		
P30.15	response	0: Reply to the host (standard Modbus	0	$\stackrel{\wedge}{\sim}$
	characteristics	protocol)		
		1: Do not reply to the host (non-standard		
		Modbus protocol)		
	31 Group Ca	anopen communication parameter		
	CANopen			
P31.00	communication	1 ~ 127	1	$\stackrel{\wedge}{\simeq}$
	address			
		0: 100k		
		1: 125k		
P31.01	CANopen Baud	2: 250k	3	$\stackrel{\wedge}{\simeq}$
	rate	3: 500k		
		4: 1M		
	CANopen			
P31.02	overtime	1ms ~ 20ms	4ms	\overleftrightarrow
	CANopen	Display the version number of the CANopen		
r31.07	version number	card	-	•
		0: Initialisation status		
		1: Disconnected		
	CANopen	2: Connecting/Preparing-		
r31.08	•		-	•
	Working status	3: Stopped		
		4: Operational status		
	CANopen	5: Pre_operational		
r31.10		The number of error frames received by		-
131.10	receive error	CANopen is not saved after power off	-	•
	count			
r31.11	CANopen send	The number of error frames sent by CANopen	-	•
	error count	is not saved after power off		
	CANopen	The number of frames received by CANopen		
r31.12	receive frame	is not saved after power off	-	•
	number			
		The number of frames sent by CANopen is not		
		saved after power off		
r31.14	CANopen send		_	•
101.17	frame number		-	-

40 Group PID function				
r40.00	PID final output value	Read only unit:0.1%	-	•
r40.01	PID final set value	Read only	-	•
r40.02	PID final feedback value	Read only	-	•
r40.03	PID deviation value	Read only unit:0.01%	-	•

PID through the target signal (command) and the controlled amount of the difference between the feedback signal proportional (P), integral (I) and differential (D) operation, adjust the inverter output frequency, etc., to achieve closed-loop system, the controlled amount Stable at the target value.

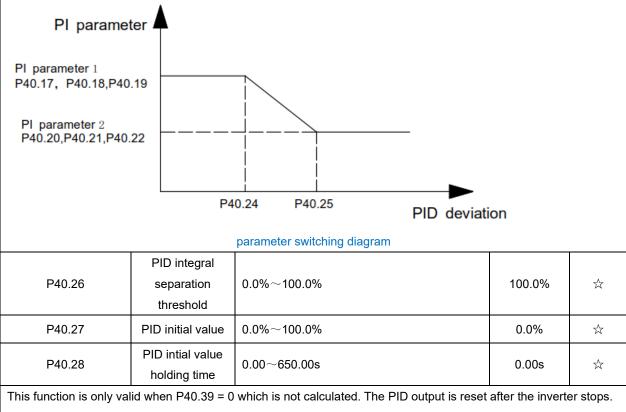
VFD500 built-in process PID structure as shown below, suitable for flow control, pressure control, temperature control and tension control applications.

		setting 3					
When PID re	ference so	ource is digital se	tting,	PID digital setting ()~3 depends on DI termina	l function 43 (p	reset PID
terminal I) ar	nd 44 (pre	set PID terminal	2):				
_	preset F	PID terminal1	pres	set PID terminal 2	PID Digital setting valu	ıe(0.1%)	
_	ine	effective		ineffective	P40.06 * 100.0% / F	40.05	
	ine	effective		effective	P40.07 * 100.0% / F	40.05	
	e	ffective		ineffective	P40.08 * 100.0% / F	40.05	
	e	ffective		effective	P40.09 * 100.0% / F	40.05	
For example:	When Al1	is used as PID	feedb	ack, if the full rang	ge corresponds to 16.0kg p	pressure and re	quire PID
control to be	8.0kg; the	n set P40.05 PIE) feed	back range to 16.0	0, PID digital reference ter	minal select t	o P40.06,
Set P40.06 (F	PID preset	setting 0) to be	8.00				
		[1			
				0:ref1			
				1:ref1+ref2			
				2:ref1-ref2			
D40.4	0	PID reference	ce	3:ref1*ref2		0	
P40.1	0	source select	tion	4:ref1/ref2		0	☆
			5:Min(ref1,ref2)				
			6:Max(ref1,ref2) 7(ref1+ref2)/2				
			8: fdb1and fdb2 s	witchovor			
					D feedback source1(fdb1)		
				0:Al1			
				1:AI2			
				2:AI3(option card)		
				3:Al4(option card			
				4: PLUSE(HDI))		
P40.1	1	PID feedbac	ck	5: Communicatio	n	00	\$
1 10.1		source1		6: Motor rated ou			~
				7: Motor rated ou	-		
				8: Motor rated ou	tput torque		
				9: Motor rated ou	tput frequency		
				Ten's digit : PID f	eedback source2 (fdb2)		
				Same as Unit's	digit		
P40.1	2	PID Feedba range	<mark>ck</mark>	0.01~655.35		100.00	☆
				0:fdb1			
				1:fdb1+fdb2			
				2:fdb1-fdb2			
				3:fdb1*fdb2			
P40.1	3	PID feedbac	k	4:fdb1/fdb2		0	☆
r'40.13	function selec	tion	. ,	Fake fdb1.fdb2 smaller		~	
					Take fdb1.fdb2 bigger		
				value			
				7: (ref1+ref2)/2			

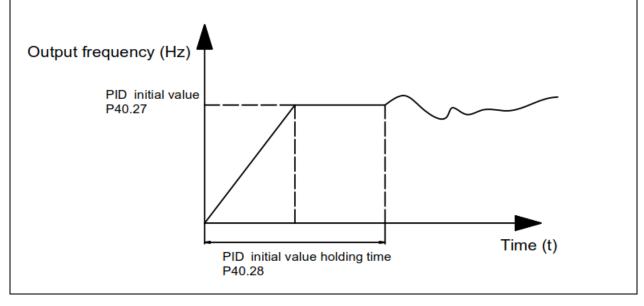
		8: fdb1and fdb2 switchover		
P40.14	PID output feature	 0: PID output is positive: when the feedback signal exceeds the PID reference value, the output frequency of the inverter will decrease to balance the PID. For example, the strain PID control during wrapup 1: PID output is negative: When the feedback signal is stronger than the PID reference value, the output frequency of the inverter will increase to balance the PID. For example, the strain PID control during wrapup 	0	Å

The PID output characteristic is determined by P40.14 and Di terminal 42 function PID positive/negative switching:

P40.14 = 0 and "42: PID positive/negative switching" terminal is invalid: : PID output characteristic is positive P40.14 = 0 and "42: PID positive/negative switching" terminal is valid: : PID output characteristic is negative P40.14 = 1 and "42: PID positive/negative switching" terminal is invalid: : PID output characteristic is negative P40.14 = 1 and "42: PID positive/negative switching" terminal is valid: : PID output characteristic is negative


P40.15	Upper limit of PID output	-100.0%~100.0%	100.0%	X
P40.16	lower limit of PID output	-100.0%~100.0%	0.0%	X
P40.17	Proportaional gain KP1	0.00~200.0% The function is applied to the proportional gain P of PID input. P determines the strength of the whole PID adjuster. The parameter of 100 means that when the offset of PID feedback and given value is 100%, the adjusting range of PID adjust is the Max. frequency (ignoring integral function and differential function).	5.0%	X+
P40.18	Integral time TI1	0.01s~20.00s This parameter determines the speed of PID adjustor to carry out integral adjustment on the deviation of PID feedback and reference. When the deviation of PID feedback and reference is 100%, the integral adjustor works continuously after the time (ignoring the proportional effect and differential effect) to achieve the Max. Frequency (P01.06) or the Max. Voltage (P12.21). Shorter the integral time, stronger is the	1.00s	*

	adjustment		
Differential time	0.000s~0.100s This parameter determines the strength of the change ratio when PID adjustor carries out integral adjustment on the deviation of PID feedback and reference. If the PID feedback changes 100% during the	0.000-	
TD1	time, the adjustment of integral adjustor (ignoring the proportional effect and differential effect) is the Max. Frequency (P01.06) or the Max. Voltage (P12.21). Longer the integral time, stronger is the adjusting.	0.000s	*
Proportaional gain KP2	0.00~200.0%.	5.0%	Δ
Integral time TI2	0.00s (no any integral effect)∼20.00s	1.00s	☆
Differential time TD2	0.000s~0.100s	0.000s	☆
PID parameter switchover condition	0: no switchover Do not switch, use KP1, TI1, TD1 1: switchover via DI Switch by DI terminal KP1, TI1, TD1 are used when DI terminal No. 41 function is invalid; KP2, TI2, TD2 are used when valid 2: automatic switchover based on deviation The absolute value of PID command and feedback deviation is less than P40.24, using KP1, TI1, TD1; the absolute value of deviation is greater than P40.25, using KP2, TI2, TD2 parameters; the absolute value of deviation is between P40.24~P40.25, The two sets of parameters are linearly transitioned.	0	*
PID parameter switchover devation 1	0.0%~P40-25	20.0%	\checkmark
PID parameter		80.0%	☆
	TD1 Proportaional gain KP2 Integral time TI2 Differential time TD2 PID parameter switchover condition PID parameter switchover condition PID parameter switchover condition	Image: Picture set of the se	Image: Second


The function codes are used to switch two groups PID parameter. The setting mode of the regulator parameters P40.20~P40.22 is similar as P40.17~P40.19's.

Two groups PID parameter can be switched via DI terminal, or switched according to PID deviation automatically.

When selection is automatic switching: when the deviation absolute value between given and feedback is smaller than P40.24 (PID parameter switching deviation 1), PID parameter selection is group 1. When the deviation absolute value between given and feedback is bigger than P40.25 (PID parameter switching deviation 2), PID parameter selection is group 2. When the deviation absolute value between given and feedback is between P40.24 and P40.25, PID parameter is the linear interpolation of two groups PID parameter, showed as below

If P40.28 \neq 0, when the inverter runs, the PID output is equal to the initial value of PID and keeps the time of P40.28.

	PID initial value function diagram					
P40.29	PID deviation limit	0.0%~100.0% The output of PID system is relative to the maximum deviation of the close loop reference. As shown in the diagram below, PID adjustor stops to work during the deviation limit. Set the function properly to adjust the accuracy and stability of the system. Reference value Value Output frequency T	0.0%	2		
P40.30	PID differential limit	0.00%~100.00%	1.00%	*		
P40.33	PID feedback filter time	0.000~30.000s	0.010s	${\swarrow}$		
P40.34	PID output filter time	0.000~30.000s	0.010s	\$		
P40.35	Detection value of PID feedback loss (lower limit)	0.0%(no detection)~100.0%	0.0%	X		
P40.36	Detection time of PID feedback loss	0.000s~30.000s	0.000s	*		
P40.37	Detection value of PID feedback loss(upper limit)	0.0% \sim 100.0%(no detection)	100.0%	¥		
P40.38	Upper Detection time of PID feedback loss	0.000s~30.000s	0.000s	¥		
P40.39	PID operation at stop	0-No PID operation at stop 1-PID operation at stop	0	☆		
P40.40	PID command for accel and decel time	0.0s∼6000.0s	0.0s	*		

P40.41	PID offset selection	0-digital setting 1-AI1 2-AI2 3-AI3(option card)	0	☆
P40.42	PID offset digital setting	-100.0%~100.0%	0.0%	*
	41 (Group Sleeping function		
P41.00	Sleep mode and wake up selection	 Unit's digit: sleep mode selection 0:no sleep function 1:sleep by frequency 2:Al1 sleep (Al1 as pressure feedback) 3:Al2 sleep(Al2 as pressure feedback) 3:Al3 sleep (Al3 as pressure feedback) 3:Al4 sleep(Al4 as pressure feedback) 3:Al4 sleep(Al4 as pressure feedback) Ten's digit :wake up mode selection 0:wake up by frequency 1:Al1 wake up (Al1 as pressure feedback) 2:Al2 wake up (Al2 as pressure feedback) 2:Al2 wake up (Al3 as pressure feedback) 3:Al3 wake up (Al3 as pressure feedback) 3:Al3 wake up (Al3 as pressure feedback) 3:Al3 wake up (Al4 as pressure feedback) 4:Al4 wake up (Al4 as pressure feedback) 4:Al4 wake up (Al4 as pressure feedback) Hundred's digit:Sleep wake direction selection 0: positive direction Sleep source (Al1 ~ Al4) > P41.03, inverter will sleep Wake-up source (Al1 ~ Al4) < P41.04, the inverter will wake up 1: reverse direction Sleep source (Al1 ~ Al4) > P41.04, the inverter wakes up. > When the sleep source and wakeup source are the same, please pay attention to the size relationship of P41.03 and P41.04. If the parameter setting is unreasonable, when the wake- 	010	*

		up condition is selected, even if the sleep condition is established, the sleep state cannot be entered, and special attention is required when using.		
P41.01	Sleep setting value by frequency	0.00Hz \sim 600HZ,It will sleep if value is less than this value	0.00Hz	Å
P41.02	Wake up threshold by frequency	0.00hz \sim 600.00hz, ,It will wake up if value is bigger than this value	0.00Hz	4%
- · ·	• • •	uency wake-up, it must be set by P41.01 < P41.0 ency wake-up must be set to PID shutdown oper		
P41.03	Sleep setting value by pressure	0~100.0%	0.0%	${\sim}$
P41.04	Wake up threshold by pressure	0.~100.0%	0.0%	$\stackrel{\wedge}{\sim}$
P41.05	Sleep delay time	0.0s~6000.0s	0.0s	\overleftrightarrow
P41.06	Wake up delay up	0.0s~6000.0s	0.0s	$\stackrel{\wedge}{\sim}$
P41.07	Sleep decelerating time	Setting value decide by P03.16 P03.16 = 2, 0.00~600.00s; P03.16 = 1, 0.0s~6000.0s; P03.16 = 0, 0s~60000s P41.07 set to 0,sleeping stop mode to free coast。	0.00s	Å.
		42 Group Simple PLC		
r42.00	PLC current running mode	Read only	-	•
r42.01	PLC current running remaining time	Read only	-	•
r42.02	PLC times of cycles	Read only	-	•
P42.03	Simple PLC running mode	Unit'digit: 0: single cycle then stop 1: single cycle then keep last speed 2: recycle 3: Plc reset when single cycle stop Ten's digit: 0:power off without saving 1:power off with saving Hundred'digit:	003	Å

0:stop without saving 1:stop with saving 0: Restart from the first stage; stop during running (cause by the stop command, fault or power loss), run from the first stage after restart. 1: Continue to run from the stop	
0 : Restart from the first stage; stop during running (cause by the stop command, fault or power loss), run from the first stage after	
running (cause by the stop command, fault or power loss), run from the first stage after	
or power loss), run from the first stage after	
restart. 1. Continue to run nom the stop	
frequency; stop during running(cause by stop	
command and fault), the inverter willrecord	
the running time automatically, enter into the	
stage after restart and keep the remaining	
running at the setting frequency.	
PLC running	
P42.04 1~60000 1	$\stackrel{\wedge}{\simeq}$
0.0~6553.5 unit depend on P42.21	
PLC step 1 Notice:Running time do not conclude	
P42.05 running time acceleration and deceleration time, same as	☆
following	
PLC step 2	
P42.06 0.0~6553.5 unit depend on P42.21 0.0	☆
PLC step 3	
P42.07 $0.0 \sim 6553.5$ unit depend on P42.21 0.0	☆
PLC step 4	
P42.08 0.0~6553.5 unit depend on P42.21 0.0	\$
PLC step 5	
P42.09 0.0~6553.5 unit depend on P42.21 0.0	☆
PLC step 6	
P42.10 0.0~6553.5 unit depend on P42.21 0.0	\overleftrightarrow
PLC step 7	٨
P42.11 0.0~6553.5 unit depend on P42.21 0.0	\Diamond
PLC step 8 0.0 c 6553 5 unit depend on D43 31 0.0	~
P42.12 0.0~6553.5 unit depend on P42.21 0.0	\Rightarrow
P42.13 PLC step 9 0.0~6553.5 unit depend on P42.21 0.0	_^_
running time	\Rightarrow
P42.14 PLC step 10 0.0~6553.5 unit depend on P42.21 0.0	☆
running time	×
P42.15 PLC step 11 0.0~6553.5 unit depend on P42.21 0.0	☆
running time	X
P42.16 PLC step 12 0.0~6553.5 unit depend on P42.21 0.0	~~
P42.16 0.0~6553.5 unit depend on P42.21 0.0	☆
P42.17 PLC step 13 0.0~6553.5 unit depend on P42.21 0.0	Δ
running time	×
P42.18 PLC step 14 0.0~6553.5 unit depend on P42.21 0.0	☆
running time	X
P42.19 PLC step 15 0.0~6553.5 unit depend on P42.21 0.0	Δ
running time	X
P42.20 PLC step 16 0.0~6553.5 unit depend on P42.21 0.0	${\sim}$

	running time							
P42.21	PLC running time unit	0:S;1:minute;2:hour	0	\$				
P42.22	PLC step 1-4 ACCEL/DECEL time selector	Unit'digit:step 1 ACCEL/DECEL time selector ten'digit: step 2 ACCEL/DECEL time selector Hundred's: step 3 ACCEL/DECEL time selector Thousand'unit:step 4 ACCEL/DECEL time selector 0- ACCEL/DECEL time 1 1- ACCEL/DECEL time 2 2- ACCEL/DECEL time 3 3- ACCEL/DECEL time 4	0000	*				
P42.23	PLC step 5-8 ACCEL/DECEL time selector	Unit'digit: ACCEL/DECEL time 5 Ten'digit: ACCEL/DECEL time 6 Hundred'digit: ACCEL/DECEL time 7 Thousand'digit: ACCEL/DECEL time 8 0- ACCEL/DECEL time 1 1- ACCEL/DECEL time 2 2- ACCEL/DECEL time 3 3- ACCEL/DECEL time 4	0000	Å				
P42.24	PLC step 9-12 ACCEL/DECEL time selector	Unit'digit: ACCEL/DECEL time 9 ten'digit: ACCEL/DECEL time 10 Hundred'digit: ACCEL/DECEL time 11 Thousand'digit: ACCEL/DECEL time 12 0- ACCEL/DECEL time 1 1- ACCEL/DECEL time 2 2- ACCEL/DECEL time 3 3- ACCEL/DECEL time 4	0000	Å				
P42.25	PLC step 13-16 ACCEL/DECEL time selector	Unit's Digit: ACCEL/DECEL time 13 Ten'Digit: ACCEL/DECEL time 14 Hundred'digit: ACCEL/DECEL time 15 Thousand's digit: ACCEL/DECEL time 16 0- ACCEL/DECEL time 1 1- ACCEL/DECEL time 2 2- ACCEL/DECEL time 3 3- ACCEL/DECEL time 4	0000	Å				
P42.26	PLC stop decelerating time	$0.01 \sim 60000s$ Setting value decide by P03.16 P03.16 = 2, $0.00 \sim 600.00s$; P03.16 = 1, $0.0s \sim 6000.0s$; P03.16 = 0, $0s \sim 60000s$	20.00s	☆				
43 Group Programming delay-unit								

r43.00 VFD500 inverter built- be viewed in the fun selection. Can be use	nction code table, a	the delay Bit defini indicate f 0 means delay unit nd finally o	tion is used, Bit0~B the output status of invalid, 1 means va can collect the statu utput the delay unit	it3 respected delay uni alid. us of 0 ~ status af	ctively ts 1~4, <mark>15 bits of</mark> ter delay	processing a	nd logic
parameter selection P43.02	Parameter bit s P43.03=		Delay process P43.04, P43.	•	•	ical selection 0 of P43.01 ▼	
Input Ref (P43.02 The value of the selected function code)	► 15141312110098765 Take the xth (0~15 of Ref	4 3 2 1 0 5) bit	0i P43.04 input output	P43.05		<i>n</i>	y unit 1 utput ▶
		Delay un	it 1 block diagram				
The picture shows the	-	-	-		-	-	
DI/DO delay processing	g also can be combi I	ined with c	-	-	its for mo	re complex a	pplications.
P43.01	Delay unit 1-4 logicl	0000B~1111B Bit0~Bit3 corresponds to delay units 1~4, which are used to specify whether the output of the delay unit is inverted.				0	*
P43.02	Delay unit 1 input parameter selection	00.00-98	.99(function code ir	00.00	\$		
P43.03	Delay unit 1 input bit selection	0-15				0	☆
P43.04	Delay unit 1 rising edge delay time	0.0s~3000.0s				0.0s	\$
P43.05	Delay unit 1 descending edge delay time		0.0s∼3000.0s	i		0.0s	\$
P43.06	Delay unit 2 input parameter selection	00.00-98	.99(function code ir	ndex)		00.00	${\sim}$
P43.07	Delay unit 2 input bit selection		0-15			0	\$
P43.08	Delay unit2 rising edge delay time		0.0s∼3000.0s	i		0.0s	☆

		l de la constante de		1
P43.09	Delay unit2descending edge delay time	0.0s~3000.0s	0.0s	☆
P43.10	Delay unit 3 input parameter selection	00.00-98.99(function code index)	00.00	Å
P43.11	Delay unit 3 input bit selection	0-15	0	Å
P43.12	Delay unit3 rising edge delay time	0.0s∼3000.0s	0.0s	\$
P43.13	Delay unit3descending edge delay time	0.0s~3000.0s	0.0s	☆
P43.14	Delay unit 4 input parameter selection	00.00-98.99(function code index)	00.00	\$
P43.15	Delay unit 4 input bit selection	0-15	0	Å
P43.16	Delay unit4 rising edge delay time	0.0s∼3000.0s	0.0s	\$
P43.17	Delay unit4descending edge delay time	0.0s~3000.0s	0.0s	☆
	44 Group V	ariable selector and logic block		
r44.00	Variable selector 1~4 output	bit0 \sim 3 indicate the output of variable selector 1-4	-	•
r44.01	Logic block 1~4 output	bit0 \sim 3 indicate the output of logic block 1 \sim 4	-	•
P44.02	Variable selector 1 input parameter	00.00 \sim 98.99(Function code index)	00.00	\$
P44.03	Variableselector 1 threshold	00.00 \sim 98.99(Function code index)	00.00	☆
P44.04	Variable selector 1 logic mode	0:>; 1:<; 2:≥;3:≤;4:=; 5:≠; 6:≈	0	\$
P44.05	Variableselector 1 hysteresis width	0~65535	0	$\stackrel{\wedge}{\asymp}$
selecting the comparis	group variable select son relationship, and ,VDI,virtual relay inpu	or,this function can be used for any two function output will be 1 if it meet conditions or it will be (and DO,relay.etc output.Users can easily and n ,variable selector 1 frame as follows).Variable selec	tor output

	P44.02 variable selector1 input P44.03 variable selector1 referemce	P44.05 cal choices Hysteresis width	iph	
P44.06	Variable selector 2 input parameter	00.00-98.99(function code index)	00.00	$\dot{\mathbf{x}}$
P44.07	Variable selector 2 threshold	00.00-98.99(function code index)	00.00	\$
P44.08	Variable selector 2 logic mode	0:>; 1:<; 2:≥;3:≤;4:=; 5:≠; 6:≈	0	4%
P44.09	Variable selector 2 hysteresis width	0~65535	0	☆
P44.10	Variable selector 3 input parameter	00.00-98.99(function code index)	00.00	$\overset{1}{\sim}$
P44.11	Variable selector 3 threshold	00.00-98.99(function code index)	00.00	\$7
P44.12	Variable selector 3 logic mode	0:>; 1:<; 2:≥;3:≤;4:=; 5:≠; 6:≈	0	4%
P44.13	Variable selector 3 hysteresis width	0~65535	0	☆
P44.14	Variable selector 4 input parameter	00.00-98.99(function code index)	00.00	Å
P44.15	Variable selector 4 threshold	00.00-98.99(function code index)	00.00	43
P44.16	Variable selector 4 logic mode	0:>; 1:<; 2:≥;3:≤;4:=; 5:≠; 6:≈	0	*
P44.17	Variable selector 4 hysteresis width	0~65535	0	Å
P44.18	Logic block 1 threshold	00.00-98.99(function code index)	00.00	\$

	parameter 1			
P44.19	Logic block 1 threshold parameter2	00.00-98.99(function code index)	00.00	☆
P44.20	Logic block 1 input source	Unit'digit: parameter 1 bit selection 0-F (Represent 0-15),P44.18 corresponds to 0-15 bit Ten'digit:parameter 2 bit selection 0-F (Represent 0-15),P44.19 corresponds to 0-15 bit	0	
P44.21	Logic bock 1 function	0:no function;1:and; 2:or; 3:not and; 4:not or; 5: exclusive OR 6:Ref=1 effective;Ref2=1 ineffective 7:Ref1 up effective,Ref2 up ineffective 8:Ref1 up and signal reverse 9:Ref1 up and output 200ms pulse width	0	À
0-15 bits of any para output can be used as	meter 2 for logic pro	unit can perform any one of 0-15 bits of any para cessing. The condition is true output 1, otherwise and other inputs, DO, relays and other output, th	e 0 is output. Lo	ogic unit
P44.18 Parameter P44.19 parameter	r1 r2 Par s Unit' 1bit Ten'	P44.20 rameter bit selection s digit:select parameter s digit:select parameter	s as follows. ogical unit output ►	
P44.18 Parameter P44.19	r1 r2 Par s Unit' 1bit Ten'	P44.20 ameter bit election s digit:select parameter s digit:select	ogical unit	\$
P44.18 Parameter P44.19 parameter	r1 r2 Par s Unit' 1bit Ten' 2bit Logic block 2 threshold	P44.20 ameter bit election s digit:select parameter s digit:select parameter	ogical unit	\$
P44.18 Parameter P44.19 parameter P44.22	r1 r2 Par s Unit' 1bit Ten' 2bit Logic block 2 threshold parameter 1 Logic block 2 threshold	P44.20 rameter bit election s digit:select parameter s digit:select parameter 00.00-98.99(function code index)	ogical unit output ►	

		2:or;		
		3:not and;		
		4:not or;		
		5: exclusive OR		
		6:Ref=1 effective;Ref2=1 ineffective		
		7:Ref1 up effective,Ref2 up ineffective		
		8:Ref1 up and signal reverse		
		9:Ref1 up and output 200ms pulse width		
	Logic block 3			
P44.26	threshold	00.00-98.99(function code index)	00.00	${\leftrightarrow}$
	parameter 1			
	Logic block 3			
P44.27	threshold	00.00-98.99(function code index)	0	\overleftrightarrow
	parameter2	,	-	
<u> </u>		Unit'digit: parameter 1 bit selection		
		0-F (Represent 0-15),P44.26 corresponds to		
	Logic block 3	0-15 bit		
P44.28	input source	Ten'digit:parameter 2 bit selection	0	☆
	input source			
		0-F (Represent 0-15),P44.27 corresponds to		
		0-15 bit		
		0:no function;		
	Logic bock 3	1:and;		
		2:or;		
		3:not and;		
P44.29		4:not or;	0	\overleftrightarrow
1 11.20	function	5: exclusive OR	Ũ	~
		6:Ref=1 effective;Ref2=1 ineffective		
		7:Ref1 up effective,Ref2 up ineffective		
		8:Ref1 up and signal reverse		
		9:Ref1 up and output 200ms pulse width		
	Logic block 4			
P44.30	threshold	00.00-98.99(function code index)	00.00	\$
	parameter 1			
	Logic block 4			
P44.31	threshold	00.00-98.99(function code index)	00.00	\Leftrightarrow
	parameter2			
<u> </u>	P	Unit'digit: parameter 1 bit selection		
		0-F (Represent 0-15),P44.30 corresponds to		
	Logic block 4	0-15 bit		
P44.32	input source	Ten'digit:parameter 2 bit selection	0	$\stackrel{\wedge}{\simeq}$
	input source			
		0-F (Represent 0-15),P44.31 corresponds to		
		0-15 bit		
		0:no function;		
	Logic bock 4	1:and;	_	
P44.33	function	2:or;	0	\overleftrightarrow
		3:not and;		
		4:not or;		

		5: exclusive OR		
		6:Ref=1 effective;Ref2=1 ineffective		
		7:Ref1 up effective,Ref2 up ineffective		
		8:Ref1 up and signal reverse		
	0	9:Ref1 up and output 200ms pulse width		
P44.34	Constant setting 1	0~65535	0	$\stackrel{\circ}{\simeq}$
P44.35	Constant setting 2	0~65535	0	\$
P44.36	Constant setting 3	0~65535	0	\$
P44.37	Constant setting 4	-9999~9999	0	X
P44.38	Constant setting 1 as per bit definition	0 \sim 65535(define as bit)	0	$\stackrel{\wedge}{\sim}$
P44.39	Constant setting 2 as per bit definition	0 \sim 65535(define as bit)	0	$\overset{\wedge}{\varkappa}$
P44.40	Constant setting 3 as per bit definition	$0{\sim}65535$ (define as bit)	0	$\stackrel{\wedge}{\sim}$
P44.41	Constant setting 4 as per bit definition	$0{\sim}65535$ (define as bit)	0	${\sim}$
Constant setting for	reference of variab	e selector or logic block input		
	45 Gro	up Multi-functional counter		
		The count value before the electronic gear,		
r45.00	Counter 1 input value	that is, the number of pulses received by the counter 1 hardware, 32-bit read-only data	-	•
r45.02	Counter 1 count value	Count value after electronic gear, 32-bit read-only data	-	•
P45.04	Counter 1 set value	1 to 4294967295, when the counter 1 count value (after the electronic gear) reaches this setting, the DO function "Counter 1 set value reached" is valid.	1000	Å
P45.06	Counter 1 maximum value	1 to 4294967295, set the maximum value of counter 1 (after electronic gear)	429496729 5	X
P45.08	Counter 1 Electronic gear numerator	$1\sim 65535$ Counter 1 count value = counter 1 input value ×(electronic gear numerator / electronic gear denominator)	1	☆
P45.09	Counter 1 Electronic gear denominator	1~65535	1	Å

VFD500 has two inbuilt counters:Counter 1 is a 32-bit multifunction counter with electronic gears; counter 2 is a 16-bit normal counter with no electronic gear function. Now take the counter 1 as an example to briefly explain its function and use, and the counter 2 will not be specified.

The counter 1 receives the pulse signal through the terminal corresponding to the DI function "Counter 1 input", and the pulse signal is used for the counter 1 counting after passing through the electronic gear. When the count value reaches the set value (P45.04), the DO function "Counter 1 set value reached" is valid; when the count value reaches the maximum value (P45.06), select whether to stop counting or reset the count according to P45.13. value.

The counter can also be reset by the DI terminal. When the DI Terminal is the "Counter 1 reset" function and the terminal is valid, the counter 1 is reset.

For example: P45.04=3, P45.08=3, P45.09=1, the function of counter 1 is as shown below.

Counter input:		ſ	1	\Box	[ſ	[[]						
Counter1 before electronic gear	1	2	3	4	5	6	7	8	9	 0	1	2	3	4
Counter1 after electronic gear			1			2			3	 0			1	
Set value arrival output														
Counteer reset DI inpu	t]			

By setting a reasonable electronic gear, the counter 1 can realize functions such as fixed length in addition to the counting function, and the user can flexibly use it in specific applications.

r45.10	Counter 2 actual value	Read only	-	•
P45.11	Counter 2 set value	When the counter 2 count value (after the electronic gear) reaches this setting, the DO function "Counter 2 set value reached" is valid.setting range: $1\sim65535$	1000	X
P45.12	Counter 2 maximum value	1 to 65535, set the maximum value of counter 2. Setting range: 1~65535	65535	X
P45.13	Counter 1 control	Unit'digit: counting method 0: Stop counting after counting the maximum value 1: Reset after counting the maximum value, recount from 0 Ten'sdigit: the action after the counter reaches the set value 0: continue to run 1: Free stop 2: Ramp to stop 3: Emergency stop Hundred's digit : Power-down save option 0: Do not save the count value when power is off 1: save the count value when power is off	001	*
P45.14	Counter 2 control	Unit'digit: counting method 0: Stop counting after counting the maximum value 1: Reset after counting the maximum value,	100	\$

		recount from 0								
		Ten'sdigit: the action after the counter								
		reaches the set value								
		0: continue to run								
		: Free stop								
		2: Ramp to stop								
		3: Emergency stop								
		Hundred's digit : Power-down save option								
		0: Do not save the count value when power								
		is off								
		1: save the count value when power is off								
Count 1/2 overflow a	action:when counter hig	gher than maximum value as following chart								
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$										
	Stop co	unting Continue co after overflowin								
60 Group Motor 2 basic parameter										
P60.00	Control mode	Same as P00.04	0	*						
P60.01	Upper limit frequency	Same as P01.07	0	*						
	Upper limit									
P60.02	frequency digital setting	Lower limit (P01.09) \sim maximum frequency(P01.06)	50.00Hz	☆						
P60.02 P60.04	frequency digital	()	50.00Hz 0	☆ ★						
	frequency digital setting Accel and Decel	frequency(P01.06) 0: same as motor 1 1: Accel and Decel time 3 When choose 1,Motor 2 can convert betweens accel and decal time 3 and 4 by DI terminal function code 55 or switch by output		*						
P60.04	frequency digital setting Accel and Decel time option Accel time frequency	frequency(P01.06) 0: same as motor 1 1: Accel and Decel time 3 When choose 1,Motor 2 can convert betweens accel and decal time 3 and 4 by DI terminal function code 55 or switch by output frequency comparing with P60.05 P60.06)	0	*						
P60.04	frequency digital setting Accel and Decel time option Accel time frequency switchover 2	frequency(P01.06) 0: same as motor 1 1: Accel and Decel time 3 When choose 1,Motor 2 can convert betweens accel and decal time 3 and 4 by DI terminal function code 55 or switch by output frequency comparing with P60.05 P60.06)	0	*						
P60.04 P60.05	frequency digital setting Accel and Decel time option Accel time frequency switchover 2 Decel time	frequency(P01.06) 0: same as motor 1 1: Accel and Decel time 3 When choose 1,Motor 2 can convert betweens accel and decal time 3 and 4 by DI terminal function code 55 or switch by output frequency comparing with P60.05 P60.06) 0.00Hz~maximum frequency (P01.06)	0 0.00Hz	*						
P60.04 P60.05	frequency digital setting Accel and Decel time option Accel time frequency switchover 2 Decel time frequency switchover 2	frequency(P01.06) 0: same as motor 1 1: Accel and Decel time 3 When choose 1,Motor 2 can convert betweens accel and decal time 3 and 4 by DI terminal function code 55 or switch by output frequency comparing with P60.05 P60.06) 0.00Hz~maximum frequency (P01.06)	0 0.00Hz	*						
P60.04 P60.05	frequency digital setting Accel and Decel time option Accel time frequency switchover 2 Decel time frequency switchover 2 Switchover 2 switchover 2	frequency(P01.06) 0: same as motor 1 1: Accel and Decel time 3 When choose 1,Motor 2 can convert betweens accel and decal time 3 and 4 by DI terminal function code 55 or switch by output frequency comparing with P60.05 P60.06) 0.00Hz~maximum frequency (P01.06) 0.00Hz~maxinumm frequency(P01.06)	0 0.00Hz	*						
P60.04 P60.05	frequency digital setting Accel and Decel time option Accel time frequency switchover 2 Decel time frequency switchover 2	frequency(P01.06) 0: same as motor 1 1: Accel and Decel time 3 When choose 1,Motor 2 can convert betweens accel and decal time 3 and 4 by DI terminal function code 55 or switch by output frequency comparing with P60.05 P60.06) 0.00Hz~maximum frequency (P01.06) 0.00Hz~maxinumm frequency(P01.06) 61 Group Motor2 parameter	0 0.00Hz	*						
P60.04 P60.05	frequency digital setting Accel and Decel time option Accel time frequency switchover 2 Decel time frequency switchover 2 Decel time frequency switchover 2 0 61.xx	frequency(P01.06) 0: same as motor 1 1: Accel and Decel time 3 When choose 1,Motor 2 can convert betweens accel and decal time 3 and 4 by DI terminal function code 55 or switch by output frequency comparing with P60.05 P60.06) 0.00Hz~maximum frequency (P01.06) 0.00Hz~maxinumm frequency(P01.06) 61 Group Motor2 parameter same as motor 1 parameter P11.xx	0 0.00Hz	*						
P60.04 P60.05	frequency digital setting Accel and Decel time option Accel time frequency switchover 2 Decel time frequency switchover 2 61.xx 62 Grd 62.xx	frequency(P01.06) 0: same as motor 1 1: Accel and Decel time 3 When choose 1,Motor 2 can convert betweens accel and decal time 3 and 4 by DI terminal function code 55 or switch by output frequency comparing with P60.05 P60.06) 0.00Hz~maximum frequency (P01.06) 0.00Hz~maxinumm frequency(P01.06) 61 Group Motor2 parameter same as motor 1 parameter P11.xx oup Motor 2 VF control parameter	0 0.00Hz	*						

Chapter 6 Fault Diagnosis and Solution

6.1 Failure and diagnosis

The VFD500 inverter has perfect protection. If a fault occurs, the inverter will act according to the fault attribute. For more serious faults, the inverter will directly block the output; for general faults, it can be configured to stop or continue to operate according to the scheduled stop mode. After the inverter fails, the fault relay contacts act and the fault code is displayed on the display panel. Before seeking service, users can perform self-checking according to the tips in this section, analyze the cause of the fault, and find a solution.

Fault Name	Fault code	Display	Possible Causes	Solutions
Inverter unit protection	1	Er. SC Er. SC	 Motor insulation aging The cable is damaged and contact, short circuit The distance between motor and inverter are too long. Output transistor breakdown The internal wiring of the inverter is loose, or the hardware is bad. Brake transistor short circuit 	 Confirm the insulation resistance of the motor. If it is turned on, replace the motor. Check the power cable of the motor Install reactor or output filter seeking technical support seeking technical support Check if the braking resistor is damaged and the wiring is correct.
Over current during acceleration	2	Er.OC1 Er.oL I	 The output circuit is grounded or short circuited. Motor auto-tuning is not performed. The acceleration time is too short. Manual torque boost or V/F curve is not appropriate. The voltage is too low. The startup operation is performed on the rotating motor. A sudden load is added during acceleration. The frequency inverter model is of too small power class. 	 Eliminate external faults. Perform the motor auto- Tuning in cold state Increase the acceleration time. Adjust the manual torque boost or V/F curve. Adjust the voltage to normal range. Select rotational speed tracking restart or start the motor after it stops. Remove the added load. Select a frequency inverter Of higher power class.
Over current during deceleration	3	Er.OC2 Er.oC2	 The output circuit is grounded or short circuited. Motor auto-tuning is not performed. The deceleration time is too short. The voltage is too low. A sudden load is added during deceleration. The braking unit and braking resistor are not installed 	 Eliminate external faults. Perform the motor auto-tuning. Increase the deceleration time. Adjust the voltage to normal range. Remove the added load. Install the braking unit And braking resistor.

Fault Name	Fault code	Display	Possible Causes	Solutions
Over current at constant speed	4	Er.OC3 Er.oL B	 The output circuit is grounded or short circuited. Motor auto-tuning is notperformed. The voltage is too low. A sudden load is added during operation. The frequency inverter model is of too small power class. 	 Eliminate external faults. Perform the motor auto- tuning. Adjust The voltage to normal range. Remove the addedload. Select a frequency Inverter of higher power class.
Overvoltage during acceleration	5	Er.OU1 Er.oU I	 1:The input voltage is too high 2:The surge voltage is mixed in the input power supply. 3: There is an external force to drive the motor to run, or the brake type load is too heavy 4:The acceleration time is too short 5:The motor is shorted to ground 	1:The power supply voltage is reduced to the normal range 2:Install DC reactor 3:Cancel the external force of the draggable motor or install the brake unit 4: Increase the acceleration time 5:Eliminate the part of the ground short circuit
Overvoltage during deceleration	6	Er.OU2 Er.oU2	 1:The input voltage is too high 2:The surge voltage is mixed in the input power supply. 3: there is an external force to drive the motor to run, or the brake type load is too heavy 4:the decceleration time is too short 5:the motor is shorted to ground 	1:the power supply voltage is reduced to the normal range 2:install DC reactor 3:Cancel the external force of the draggable motor or install the brake unit 4: increase the decceleration time 5:eliminate the part of the ground
Overvoltage at constant speed	7	Er.OU3 Er.oU3	 1:The input voltage is too high 2:The surge voltage is mixed in the input power supply. 3: There is an external force to drive the motor to run, or the brake type load is too heavy 4:The acceleration or decceleration time is too short 5:The motor is shorted to ground 	1:the power supply voltage is reduced to the normal range 2:install DC reactor 3:Cancel the external force of the draggable motor or install the brake unit 4: increase the acceleration or decceleration time 5:eliminate the part of the ground

Fault Name	Fault code	Display	Possible Causes	Solutions
Low voltage	8	Er.Lv1 Er.Lu I	 Instantaneous power failure occurs on the input power supply or input phase loss The frequency inverter's input voltage is not within the allowable range. Cut off the power during operation 4:the internal wiring of the inverter is loose, or the hardware is bad. 	1:Check if the input power supply is abnormal, whether the input power terminal is loose, whether the input contactor or the air switch is abnormal. 2:adjust the voltage to the normal range 3:Power off after the inverter stops 4:seeking technical support 5: For the unstable power supply, if the performance requirements are low, try to enable the undervoltage stall function (P23.00).
Contactor open	9	Er.Lv2 Er.Lu2	 Instantaneous power failure occurs on the input power supply The frequency inverter's input voltage is not within the allowable range. Cut off the power during operation the internal wiring of the inverter is loose, or the hardware is bad. 	1:Check if the input power supply is abnormal, whether the input power terminal is loose, whether the input contactor or the air switch is abnormal. 2:adjust the voltage to the normal range 3:Power off after the inverter stops 4:seeking technical support 5: For the unstable power supply, if the performance requirements are low, try to enable the undervoltage stall function (P23.00).
Frequency inverter overload	10	Er. Ol Er. ol	 1:The load is too large or the motor is blocked. 2:The large inertia load acceleration and deceleration time is too short 3: When the VF is controlled, the torque boost or V/F curve is not suitable. 4:The frequency converter selection is too small 5:Overload at low speed operation 	 Reduce the load and check the motor and mechanical conditions. increase the acceleration and deceleration time Adjust the torque boost or V/F curve select the inverter with a larger power level Perform motor self-learning in cold state and reduce carrier frequency at low speed

Fault Name	Fault code	Display	Possible Causes	Solutions
Motor overload	11	Er.oL1 Er.oL I	 1:The load is too large or the motor is blocked. 2:The large inertia load acceleration and deceleration time is too short 3:When the VF is controlled, the torque boost or V/F curve is not suitable. 4:The motor selection is too small 5:overload at low speed operation 6:Improper setting of motor parameters and motor protection parameters 	 Reduce the load and check the motor and mechanical conditions. Correctly set the motor parameters and motor protection parameters. increase the acceleration and deceleration time Adjust the torque boost or V/F curve select a motor with a higher power level Perform motor self-learning in cold state and reduce carrier frequency at low speed check the settings of related parameters
Power input phase loss	12	Er.iLP Er.i LP	 The three-phase power input is abnormal. The drive board is faulty. Thelightning proof board is faulty. The main control board is faulty. 	 1:Eliminate external faults. 2: Ask for technical support. 3: Ask for technical support. 4: Ask for technical support.
Power output phase loss	13	Er.oLP Er.olP	 The cable connecting the frequency inverter and the motor is faulty. The frequency inverter's three-phase outputs are unbalanced when the motor is running. The drive board is faulty. The IGBT module is faulty. 	 Eliminate external faults. Check whether the Motor three phase winding is normal. Ask for technical support. Ask for technical support.

Fault Name	Fault code	Display	Possible Causes	Solutions
IGBT Module overheat	14	Er. oH Er. oH	 The ambient temperature is too high. The air filter is blocked. The fan is damaged. The thermally sensitive resistor of the IGBT module is damaged. The inverter IGBT module is damaged 	 1:Lower the ambient temperature. 2: Clean the air filter. 3: Replace thedamaged fan. 4:Replace the damaged thermally sensitive resistor. 5: Replace the inverter module.
Motor overheat	16	Er. oH3 Er.oH3	1:The temperature sensor wiring is loose 2:The motor temperature is too high 3:Themotor temperature sensor detects that the temperature is greater than the set threshold.	1:check the temperature sensor wiring 2:Improve the carrier frequency, strengthen the heat dissipation of the motor, reduce the load, and select a motor with higher power. 3:Check if the set threshold is reasonable.
By wave current limitingfault	17	Er.CbC Er.LbL	 The load is too heavy or locked- rotor occurs on the motor. The frequency inverter model is of too small power class 	 Reduce the load and check the motor and mechanical condition. Select a frequency inverter of higher power class.
Ground short circuit	18	Er.GF Er. GF	 Motor burnout or insulation aging The cable is damaged and contact, short circuit The distributed capacitance of the terminal and motor cable is larger motor cable Hardware is damaged 	 Confirm the insulation resistance of the motor. If it is turned on, replace the motor. Check the power cable of the motor to eliminate the fault point. reduce the carrier frequency, install the output reactor seeking technical support
module temperature detection fault	20	Er.tCK Er.tCĽ	 Temperature detection line broken Drive board is faulty Main control board is faulty The environmental temperature is too low 	 Check the thermistor wiring Ask for technical support Ask for technical support manual intervention to drive the temperature rise
Current detection fault	21	Er.Cur Er.Cur	 The HALL device is faulty. The drive board is faulty. The control board is faulty 	 Replace the faulty HALL device. Replace the faulty drive board. Ask for technical support.

Fault Name	Fault code	Display	Possible Causes	Solutions
Encoder offline	22	Er.PGL <mark>Er.Pul</mark>	 Motor locked Encoder pulse setting wrong Encoder offline 	1 check motor and mechanical condition 2 set correct parameter for encoder 3 check encoder connecting line
Motor over-speed	25	Er. oS Er. oS	 The encoder parameters are setincorrectly. The motor auto-tuning is notperformed. The over-speed detectionparameters are set incorrectly 	 Set the encoder parametersproperly. Perform the motor auto- tuning. Set the over-speed detection parameter correctly based on the actual situation.
Too large speed deviation	26	Er.DEV <mark>Er.dEu</mark>	 The encoder parameters are setincorrectly. The motor auto-tuning is notperformed. The detection parameters of toolarge speed deviation are setincorrectly. 	 Set the encoder parameters properly. Perform the motor auto- tuning. Set the detection parameters correctly based on the actualsituation.
Motor auto-tuning fault 1	27	Er.tU1 <mark>Er.tU I</mark>	 The motor parameters are not set according to the nameplate. The motor auto-tuning times out. 	 Set the motor parameters according to the nameplateproperly. Check the cable connecting between the Frequency inverter and themotor.
Motor auto-tuning fault 3	28	Er.tU3 Er.tU3	 The motor parameters are not set according to the nameplate. The motor auto-tuning times out. 	 Set the motor parametersaccording to the nameplateproperly. Check the cable connecting between the Frequency
Off load	31	Er. LL <mark>Er. LL</mark>	1、The frequency inverter running currentis lower than the setting value.	 Confirm whether the load is off Check that the load is disconnected or the parameter setting is correct
EEPROM read- write fault	32	Er.EEP <mark>Er.EEP</mark>	 Eeprom Operate too frequent The EEPROM chip is damaged. 	 Operate Eeprom suitable Replace the main control board
Running time arrival	33	Er.TTA Er.ŁŁA	Inverter trial time arrival	1:Contact agent or distributor
485Communication fault	34	Er.485 Er.485	 The work of the host computer is not normal The communication line is not normal The communication parameter set is incorrect 	 Check the connection of upper computer Check the communication connection line Set communication parameters correctly

Fault Name	Fault code	Display	Possible Causes	Solutions
PID feedback lost during running	36	Er.FbL <mark>Er.FbL</mark>	1、 PID feedback <p40.35 setting="" value<br="">and P40.36 not zero,PID feedback>P40.37 setting value and P40.38 not zero</p40.35>	 Check PID feedback signal P40.35 and P40.37 set correct parameter
User-defined fault 1	37	Er.Ud1 <mark>Er.Ud I</mark>	1: The signal of user-defined fault 1 is input via DI. 2:The signal of user-defined fault 1 is input via virtual I/O.	1: Reset the operation. 2: Reset the operation
User-defined fault 2	38	Er.Ud2 Er.Ud2	1: The signal of user-defined fault 2 is input via DI. 2:The signal of user-defined fault 2 is input via virtual I/O.	1: Reset the operation. 2: Reset the operation

The fault code is used for the communication read fault type: when the communication reads the registers r25.00, r26.00, r26.08, r26.16, the register contents of the reply are fault coded.

6.2 Warning type

The warning is used to remind and inform the user of the current state of the inverter. When the warning occurs, the keypad will display a warning message, and the warning will automatically reset when the warning is cleared. Some warnings require the user to check the cause before running the drive, and some do not care. Warning As an instant reminder, the drive does not store the corresponding information. Bit 12 of r27.10 indicates whether there is a warning message currently.

Warning name	War ning code	Display	Reason	Measure
Insufficient power	1	PoFF PoFF	1: The DC link voltage is insufficient and cannot be started normally.	1:Check if the inverter power supply is normal.
Wrong parameter	2	A.PARA <mark>RPAr R</mark>	1: The parameter settings are wrong, such as: The torque mode is set in the VF control mode.	1:Modify and check the parameter compatibility problem
Sleeping status	5	SLEEP SLEEP	1. The system is in a sleep state, and the system will automatically start when hibernation is over.	1:Generally no need to pay attention to it

The warning code is used for the communication read warning type: when the communication reads register r25.16, the contents of the returned register are the warning code.

Chapter 7 Selection Guide of inverter Accessory

7.1 Selection Guide of braking component

The braking resistor is used to consume the energy fed back by the motor to the inverter during braking or generating operation, so as to achieve quick braking or prevent the inverter from reporting the main circuit overvoltage fault. Braking resistor selection has two parameters: resistance and power, under normal circumstances, the greater the system inertia, the need for deceleration time is shorter, the more frequent braking, the braking resistor selection should be greater power, The smaller the resistance.

1、Selection of braking units

When braking, almost all the renewable energy of motor is consumed on the braking resistor.

$$R=\frac{U^2}{P_B}$$

Formula:

U --- The braking voltage when the system brakes stably (Different models have different values. Models with built-in braking unit can be set by P22.12)

R - Braking resistor

Pb – Braking Power

$2 \sim$ Selection power of braking resistor

Braking resistor power can be calculated according to the following formula:

 $P_R = P_B \times D$

Formula,

P_R----Braking resistor power

D ---- Braking frequency (braking process accounts for the proportion of the entire process), by the load conditions to determine the characteristics of common occasions typical values are shown in the table below:

applications	D value
elevator	20%~40%
Unwinding and winding	40%~60%
Centrifuge	40%~60%
Hoist and crane	40%~60%
General application	10%

Table 7-1 Braking frequency of common applications

3 、 braking components selection table

Table 7-2 VFD500 braking components selection table

	Three pha	se 380V	
	Recommend power of	Recommend	
Model	braking resistor	resistance value of	Braking unit
	(10%braking	braking resistor	
VFD500-R75GT4B	100W	≥ 200Ω	
VFD500-1R5GT4B	150W	≥ 180Ω	Built-in as standard
VFD500-2R2GT4B	300W	≥ 180Ω	Duin-in as Standard
VFD500-4R0G/5R5PT4B	500W	≥ 90Ω	

r		1	1
VFD500-5R5G/7R5PT4B	800W	≥ 60Ω	
VFD500-7R5G/011PT4B	1000W	≥ 60Ω	
VFD500-011G/015PT4B	1.2KW	≥ 25Ω	
VFD500-015G/018PT4B	1.5KW	≥ 25Ω	
VFD500-018G/022PT4B	2.0KW	≥ 18Ω	Duilt in an antion
VFD500-022G/030PT4B	2.5KW	≥ 18Ω	Built-in as option
VFD500-030G/037PT4	3.0KW	≥ 12Ω	
VFD500-037G/045PT4	3.7 KW	≥ 15Ω	
VFD500-045G/055PT4	4.5 KW	≥ 8Ω	
VFD500-055G/075PT4	5.5 KW	≥ 6Ω	
VFD500-075G/090PT4	7.5 KW	≥ 6Ω	
VFD500-090G/110PT4~ VFD500-710GT4	As per actual load	and braking power	external

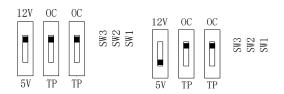
7.2 PG card type

The optional PG card and supported encoders for the VFD500 are shown in the table below.

	Chart 7	
Model	name	USAGE
MT500-PG-INC1	INCREMENTAL	open collector type, push-pull output type, differential
WI JOU-F G-INC I	PG	output type encoder.
	Incremental	open collector type, push-pull output type, differential
MT500-PG-INC2	encoder PG card	output type encoder.
WIT500-FG-INC2	with Frequency	Frequency division range: 0~63
	division	
MT500-PG-RT1	RESOLVER PG	Rotary transformer encoder

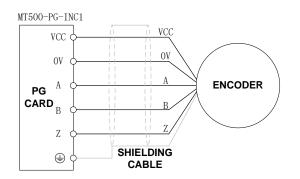
Chart 7-3 PG type view chart

(1) INCREMENTAL PG


Chart 7-4 Incremental encoder PG card (VFD500-PG-INC1) port definition

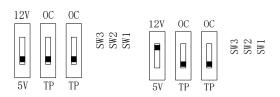
Pin number diagram	Pin	Name	Usage
	number		
	1, 10	PE	Shield terminal
			Power output for powering the
	2, 11	VCC	encoder
	2, 11	VCC	5V ± 2%, maximum 200mA
			12V±5%, maximum 200mA
1 2 3 4 5 6 7 8 9	3, 12	GND	Power supply common terminal
101112131415161718	3, 12	GND	and signal
	4	<mark>Z-</mark>	Encoder Z-signal
	5	<mark>Z+</mark>	Encoder Z+signal
	6	<mark>B-</mark>	Encoder B-signal
	7	<mark>B+</mark>	Encoder B+signal
	8	<mark>A-</mark>	Encoder A-signal

9	A+	Encoder A+signa	al
13	<mark>VV-</mark>	signal	
14	W+	Encoder W+signal	Note:UVW is used to the
15	V-	Encoder V- signal	synchronous motor
16	<mark>V+</mark>	Encoder V+signal	incremental encoder, no need wiring
17	U-	Encoder U- signal	when it is not used.
18	U+	Encoder U+signal	u360.


• Open collector type, push-pull output type encoder wiring:

Select the encoder power supply through SW3 on the PG card, SW1 and SW2 to the OC side, as shown below::

Chart 7-5 Collector open type, push-pull output type encoder DIP switch selection


When wiring, the A- $_{S}$ B- $_{Z}$ terminals of the PG card are not wired, and the signal output of the encoder is connected to the A+ $_{S}$ B+ $_{Z}$ terminals of the PG card, as shown in the figure below.:

• Differential output encoder wiring:

Select the encoder power supply through SW3 on the PG card, SW1 and SW2 to the TP side, as shown below:

Chart 7-7 Differential output type encoder DIP switch selection

The wiring of the PG card and the encoder are connected one by one according to the silkscreen.

(2) Incremental encoder PG card with Frequency division

The input signal of the MT500-PG-INC2 crossover PG card can be differential or open collector type, selected by the DIP switch; there are two sets of output signals, open collector type and differential output type; The card's port definition is shown in the table below.

Pin number diagram	Pin number	Name	Usage
	1	PE	Shield terminal
	2	VCC	Power output for powering the encoder 5V ± 2%, maximum 200mA 12V±5%, maximum 200mA
	3	GND	Power supply common terminal and signal
	4	<mark>Z-</mark>	Encoder Z-signal
1 2 3 4 5 6 7 8 9	5	<mark>Z+</mark>	Encoder Z+signal
	6	<mark>B-</mark>	Encoder B-signal
101112131415161718	7	<mark>B+</mark>	Encoder B+signal
	8	<mark>A-</mark>	Encoder A-signal
	9	<mark>A+</mark>	Encoder A+signal
<u>123456</u> 0000000	10	OZ	Z signal crossover output (NPN open collector type)
OC OC 12V	11	OB	B-phase pulse frequency dividing output (NPN open collector type)
TRUE SEASE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRU	12	OA	Phase A pulse divider output (NPN open collector type)
л	13	<mark>OZ-</mark>	Z signal crossover output Z- (differential output type)
	14	<mark>OZ+</mark>	Z signal crossover output Z+ (differential output type)
	15	OB-	B-phase pulse divider output B- (differential output type)
	16	OB+	B-phase pulse divider output B+ (differential output type)
	17	OA-	Phase A pulse divider output A- (differential output type)

Chart 7-8 Incremental encoder PG card with frequency division (MT500-PG-INC2) port definition

|--|

In the schematic diagram of the crossover card in Table 7-5, the dial switch indicates bit 0[~]bit5 of the frequency division number from right to left, the frequency division range is 0[~]63, and the frequency division number is set to 0 and 1 when there is no frequency division.

Frequency	, division	corresp	onding	to a sing	le DIP switch
requeite		COLLESP	onung	to a sing	

DIP switch	Number of frequency division
1	32
2	16
3	8
<mark>4</mark>	4
5	2
<mark>6</mark>	1

For example 35 frequency divsion: 35 = 32+2+1

Just turn the dial switches corresponding to the subscripts 1, 5, and 6 to "ON".Please refer to the description of VFD530-PG-INC1 for encoder wiring of MT500-PG-INC2.

(3) Resolver PG card

Chart 7-9 Resolver P	G Card (IVI 150	0-PG-RT1) Intel	rrace Definition
Pin number diagram	Pin	Name	Usage
	number		
	1	EXCLO	Resolver excitation negative
	2	EXC	Resolver excitation positive
	3	SIN	Resolver feedback SIN positive
9 8 7 6	4	SINLO	Resolver feedback SIN negative
	5	COS	Resolver feedback COS positive
(PORT TYPE: DB9)	9	COSLO	Resolver feedback COS negative
	6, 7, 8	NC	Hanging in air

Chart 7-9 Resolver PG Card (MT500-PG-RT1) Interface Definition

7.3 IO Extension card

- MT500-IOEX1 Extension card
- The MT500-IOEX1 expansion card is a multi-function IO expansion card for VFD530 series inverters. It can expand 4 channels of DI, 2 channels of AI, and 4 channels of DO. Among them, AI4 can be used as an ordinary voltage input analog quantity, and can also be used as a temperature detection input of PT100/PT1000/KTY84-130 (temperature detection is connected to PT and COM).
 - The terminal definitions of the MT500-IOEX1 expansion card are shown in Table 7-10

Terminal distribution	SN	Terminal	Terminal function description			
		name				
	1、10	GND	Analog ground, internally isolated from COM			
	2	A14	Analog input 4			
	2	Al4	Input 0~10V: input impedance 22KΩ			
	3、6、16	СОМ	+24V, PT, PLC and digital input and output			
	3, 0, 10	COM	public terminal			
			Provides +24V power supply to the outside,			
	4	24V	generally used as digital input and output terminal			
		210	working power supply and external sensor power			
			supply			
			Digital input power terminal			
			It is used for switching between high and low level of			
			switch input. It is short-circuited with +24V at the			
	5	PLC	factory, that is, DI is active at low level.			
			When the external power is input, disconnect the			
			PLC from the +24V.			
			It is a separate network from the PLC on the IO			
			board and is used separately.			
			PT100/PT1000/KTY84-130			
Connect Control panel						
1 2 3 4 5 6 7 8 9			temperature sensor direct OFF OFF OFF connection function SW1 SW2 SW3			
			(temperature detection			
101112131415161718			connection PT and COM)			
			DIP switch switching mode:			
	7	PT	DIP SW SW SW			
			switch 1 2 3			
			AI4 ON ON ON			
			PT100 OFF OFF OFF			
			PT1000 OFF OFF ON			
			KTY84-			
			130 OFF ON ON			
	8	DI9	Digital input 9 Input frequency:			
			Digital input 7 0~200Hz			
	9	DI7	Voltage range:			
			0~30V			
	11	AI3	Analog input 3 input 0~10V			
			Open collector output 6			
	12	DO6	Voltage range:			
			0~24V			
	13	DO4	Open collector output 4			

14	DO5	Open collector output 5	
15	DO3	Open collector output 3	
17	DI8	Digital input 8	Input frequency:
		Digital input 6	0~200Hz
18	DI6		Voltage range:
			0~30∨

7.4 CANopen exentsion card

The VFD500-CAN1 communication card is a CANopen slave communication card for connecting VFD500 series inverters to the CANopen network. Please note that CANopen communication cannot be used simultaneously with Modbus communication.

Product Features:

Support Node Guard protocol, the master station can use this function to

query device status;

Support the Heartbeat protocol, and the slave station periodically reports the

current status to the primary station;

Support NMT network management protocol;

SDO only supports the accelerated transfer mechanism, which can transfer up

to 4 bytes and can be used to read and write the inverter parameters.

Support 4 groups of PDO

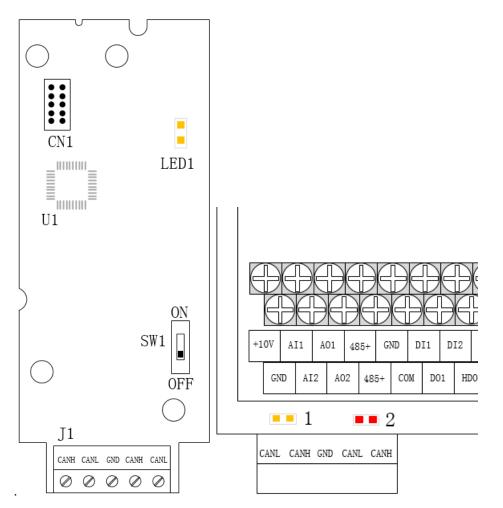


Figure 7-11 CANopen communication card and installationDiagramTable 7-12 CANopencommunication card hardware description

Graphic name	Description name	Function description
J1	Terminals	CANopen bus terminal block, see description of
JI	Terminals	Table 7-9
LED1	Power Indicator	Lights up to indicate normal power supply
		Working status and fault indication:
	Status Indicator	Yellow light (1) on: indicates normal operation
Indicator light:		Yellow light (1) flash: indicates communication
Yellow light (1)		initialization
Red light (2)	Status mulcator	Red light (2) on: indicates internal communication
itted light (2)		failure
		Red light (2) flash: indicates CANopen
		communication failure or bus off
SW1	DIP switch	Terminating resistor for setting the CANopen bus

Graphic name	Description name	Function description
1, 4	CANH	Signal line positive
2, 5	CANL	Signal line negative
3	GND	Signal ground

Table 7-9 Function description of J1 terminal block

Chapter 8 Daily maintenance of frequency inverters

8.1 Daily maintenance

Due to the influence of temperature, humidity, dust and vibration, it will lead to poor heat dissipation and component aging of frequency inverter, and results in potential failure or reducing the service life of frequency inverter. Therefore, it is necessary to do daily and regular maintenance of the frequency inverter.

8.1.1 Daily maintenance

Due to the influence of temperature, humidity, dust and vibration, it will lead to poor heat dissipation and component aging of frequency inverter, and results in potential failure or reducing the service life of frequency inverter. Therefore, it is necessary to do daily and regular maintenance of the frequency inverter. Daily check items:

1) Check if the sound is normal during the running of the motor;

2) Check if there is a vibration during the running of the motor;

3) check whether the installation environment of frequency inverter has changed;

4) Check if the cooling fan of frequency inverter is working correctly, the cooling air duct is clear;

5) Check if the frequency inverter is overheating;

6) Make sure that the frequency inverter should always be kept in a clean state;

7) Clear up effectively the dust on the surface of frequency inverter, prevent the dust from entering into the inside of frequency inverter, especially for the metal dust;

8) Clear up effectively the oil and dust on the cooling fan of frequency inverter.

8.1.2 Regular inspection

Please regularly check the frequency inverter, especially for the difficult checking place of running. Regular inspection items:

- 1) Check the air duct and clear up regularly;
- 2) Check if there are any loose screws;
- 3) Check if the inverter has been corroded;
- 4) Check whether the wiring terminals show signs of arcing;
- 5) Main circuit insulation test.
- Note: When using the megger(please use the DC 500V meg ohm meter) to measure the insulation resistance, you shall disconnect the main circuit with the frequency inverter. Do not use the insulation resistance meter to test the control circuit. It don't have to do the high voltage test (It has been done when the frequency inverter produced in factory.)

8.2 Wearing parts replacement

The vulnerable parts of the inverter mainly include cooling fans, electrolytic capacitors, relays, etc. The life of the inverter is closely related to the environment and maintenance conditions used. Table 8-3 lists the replacement time and causes of damage to the main components for reference. In addition, if abnormality is found during maintenance, please replace it in time.

 Table 8-3 Spared parts replacement time

Spared parts	Replacing time	Damaged reasons	How to check
fans	$30000 \sim$ 60000h	Bearing wear, blade aging	 the blade has cracks abnormal vibration, excessive noise
Electrolytic capacitor	$40000 \sim$ 50000h	Poor input power quality, high ambient temperature, low air pressure, frequent load changes, electrolyte aging	 there is liquid leakage the safety valve protrudes the capacitance value is beyond the allowable range insulation resistance is abnormal DC bus voltage fluctuations are too large
Relay	50000 \sim 100000 times	Corrosion, dust affect contact contact effect, contact action is too frequent	Contact ineffective

The user can refer to the accumulated power-on time and accumulated running time recorded by the inverter, and combine the actual operating conditions and the external environment to determine the replacement period.

- 1) Possible reasons for the damage of cooling fan: bearing wear and vane aging. Distinguish standard: Any cracks in the fan vanes, any abnormal vibration sound during the starting of frequency inverter.
- 2) Possible reasons for the damage of filter electrolytic capacitor: poor quality of the input power supply, the environment temperature is high, the load change frequently and the electrolyte aging. Distinguish standard: Any leakage of its liquid, if the safety valve is protruding, electrostatic capacitance and insulation resistance measurement.

8.3Warranty Items

1) Warranty only refers to frequency inverter.

2) Under normal use, if there is any failure or damage, our company is responsible for the warranty within 18 months. (Leave factory date is subjected to the S/N on the frequency inverter nameplate or according to the contract). When over 18 months, reasonable fee will be charged for maintenance;

3) During the period of 18 months, if the following situation happens, certain maintenance fee will be charged;

- a. The users don't follow the rules in the manual lead to the frequency inverter damaged;
- b. The damage caused by fire, flood and abnormal voltage;
- c. The damage caused by using the frequency inverter for abnormal functions;
- d. The relevant service fee is calculated according to the manufacturer's standard, if there is an contract, then it is subject to the contract items.

For detailed warranty instructions, please refer to the Product Warranty Card.

Appendix A Modbus communication protocol

VFD500 series of inverter provides RS485 communication on interface, and adopts MODBUS

communication protocol. User can carry out centralized monitoring through PC/PLC to get operating

requirements and user can set the running command, modify or read the function codes, the workingstate or fault information of frequency inverter by Modbus communication protocol.In addition VFD 500can also be used as a host to broadcast with other VFD500 communication.

A.1 Protocl fomat

RS485 asynchronous half-duplex.

RS485 terminal default data format: 1-8-N-1 (1 start bit, 8 data bits, no parity, 1 stop bit), the default baud rate: 9600bps. See parameter group set 30.

A.2 Message format

The VFD500 series inverter Modbus message includes the start sign, the RTU message, and the end sign $_{\circ}$

Free Start	Target station address	Function code	Data	CRC check L******H	Free End
---------------	------------------------------	------------------	------	-----------------------	-------------

The RTU message includes the address code, the PDU (Protocol Data Uint, the protocol data unit), and the CRC check. PDU includes the function code and the data section.

RTU frame format:

Frame start (START)	More than the 3.	5 byte transmission time		
Target station address (ADR)	Communication address:1 to 247(0: broadcastaddress)			
	Command	Description		
	code			
Command code	0x03	Read multiple registers of the AC drive		
(CMD)	0x06	Write a single register to the AC drive.		
	0x10	Write Multiple registers to the AC drive.		
	0x08	Diagnostic command code		
Number of function	Including the register address (2Byte), the number of registers n(2Byte)			
code	and the register	content (2nByte), etc.see A3 in detail		
CRC CHK low level	It indicates the replying data or the data waiting to			
CPC CHK high lovel	write-in. CRC 16 check value,During the transmission, high bit is put in			
CRC CHK high level	frontand low bit i	is at the back.see detail in A.5 Chapter		
FRAME END	More than 3.5 by	yte transmission time		

A.3 Command code instruction

A.3.1 Command code 0x03Read multiple registers or status words

Request PDU

Command code	1byte	0x03
initial address	2byte	0x0000~0xFFFF(high 8
		bit in front)
Number of registers	2byte	0x0001-0x0010 (1 \sim
		16,high 8 bit in front)

Response PDU

Command code	1byte	0x03
Initial address	1byte	2n (n means Number of
		registers)
Number of registers	2* nbyte	Register value high 8 bit
		in front,first send initial
		address'register value

Wrong PDU

Command code	1byte	0x83
Abnormal code	1byte	See A.4Abnormal
		response information

Currently Modbus protocol 0x03 command code does not support cross-group read multiple function codes, it will be wrongif more than the current group of function code number

A.3.2 Command code 0x06 write single registers or status word command codes Request PDU

Command code	1byte	0x06
Initial address	2byte	0x0000 \sim 0xFFFF(high 8
		bit in front)
Register value	2byte	0x0000 \sim
		0xFFFF(register value
		high 8 bit in front)

Respond PDU

Command code	1byte	0x06
Register address	2byte	0x0000~0xFFFF
Register value	2byte	0x0000~0xFFFF

Wrong PDU

Command code	1byte	0x86
Abnormal code	1byte	See A4 Abnormal
		response information

A.3.3 Command 0x10write multiple registers or status word command codes

Request PDU

Command code	1byte	0x10
Initial address	2byte	0x0000 \sim 0xFFFF(high 8
		bit in front)
Number of Register	2byte	0x0001~0x0010(1~16,
		high 8 bit in front)
Number of Byte	1byte	2n (n is number of Register)

Appendix A Modbuscommunication protocol VFD500 high performance vector control frequency inverter user manual

Register Value	2* nbyte	Register value high 8 bit
		in front,first send initial
		address'register value

Respond PDU

Command code	1byte	0x10
Initial address	2byte	0x0000 \sim 0xFFFF(high
		8 bit in front)
Number of register	2byte	$1 \sim 16(1 \sim 16, high 8 bit$
		in front)

Wrong PDU

-		
Command code	1byte	0x90
Abnomal Code	1byte	See Abnormal response
		information

A.3.4 Commad code 0x08Diagnostic function

- Modbus Command Code 0x08 Providea series of tests to check the communication system between the client (master) device and the server (slave) or various internal error conditions in the server.
- This function uses the sub-command code of 2 bytes inquery to define the type of test to be performed. The server copies the command and subcommand codes in the normal response. Some diagnostics cause the remote device to return the data through the normally responding data fields.
- Diagnostic functions to remote devices generally do not affect the user program running in the device. The main diagnostic function of this product is not line diagnosis (0000), used to test the host from the machine is normal communication.
- Request PDU

Command code	1byte	0x08
Subcommand code	2byte	0x0000 \sim 0xFFFF
Data	2byte	0x0000 \sim 0xFFFF
	•	•

Respond PDU

Command code	1byte	0x08
Subcommand code	2byte	0x0000
Data	2byte	Same as request of PDU

Wrong PDU

Command code	1byte	0x88
Abnomal code	1byte	See Abnormal response
		information

A.4 Abnormal response information

When the master device sends a request to the slave device, the master expects a normal response. The master's query may result in one of four events:

(1) If the slave device receives a request for a communication error and the query can be processed normally, the slave device will return a normal response.

(2) If the slave device does not receive the request due to a communication error, no information can be returned and the slave device times out.

(3) If the slave device receives a request and detects a communication error (parity, address, framing error, etc.), no response is returned and the slave device times out.

(4) If the slave device receives no communication error request, but can not handle the request (such as the register address does not exist, etc.), the slave station will return an abnormal response to inform the master of the actual situation.

_		
Error	Name	Description
code		
0x01	Invalid command code/error	The function code received by the slave is outside the
	function code	configured range
0x02	Error data address/Illegal	Slave station receives the data address is not allowed
	register address	address
		the number of registers being Read and write is out of
		range
		When writing multiple registers, the number of bytes in
		the PDU is not equal to the number of registers
0x03	wrong frame format	Length of frame is not correct
		CRC verifying not passed
0x04	Data is out of range	The data received by the slave exceeds the
		corresponding register minimum to maximum range
0x05	Reading request refuse	Operate to read-only register wirte
		Operate to read-only register write in running status

Abnormal response command code = normal response command code + 0x80, Abnormal code value and meaning as shown in the following table

A.5 CRC check

CRC (Cyclical Redundancy Check) use RTU frame, The message includes an error detection field based on the CRC method. The CRC field examines the contents of the entire message. The CRC field is two bytes containing a binary value of 16 bits. It is calculated by the transmission equipment and added to the message. The receiving device recalculates the CRC of the received message and compares it with the value in the received CRC field, If the two CRC values are not equal, there is an error in the transmission. There is a lot of information on the Internet about CRC checking it is not elaborated hereabout CRC check code generation algorithm,

A.6 Register address distribution

The register address of VFD500 is 16-bit data, the upper 8 bits represent the function code group number, the lower 8 bits represent the group number, the upper 8 bits are sent before. The 32-bit register occupies two adjacent addresses, the even address stores the lower 16 bits, and the next address (odd address) of the even address stores the upper 16 bits.

In the register write operation, in order to avoid frequent damage caused by memory EEPROM write, using the highest bit of the register address indicates whether it save as EEPROM, the highest bit to be 1 indicates to save in EEPROM, 0 means save only in RAM. In other words, if you want to write the register value which is saved after power-off, you should add 0x8000 to the original register address.

Adress space	Descriptoin
0x0000 ~ 0x6363 (Function code address space)	Rule: The upper 8 digits of the hexadecimal number indicate the group number (0 to 99), and the lower 8 digits indicate the serial number within the group (0 to 99).

VFD500 register address as follows:

		Example 1: Function code 27.10 (drive status word 1), which
		The hexadecimal address is: 0x1B0A (0x1B = 27, 0x0A = 10),
		Decimal address: 27 × 256 + 10 = 6922.
		Example 2: Function code 14.01 (digital setting of torque reference), when
		no EEPROM is stored, its
		The hexadecimal address is: $0x0E01 (0x0E = 14, 0x01 = 1)$,
		The decimal address is: $14 \times 256 + 1 = 3585$.
		If you want to apply the content written in communication to EEDROM after
		If you want to save the content written in communication to EEPROM after power off, then
		The hexadecimal address is 0x8E01 (0x0E01 plus 0x8000), The decimal address is 36353 (3585 plus 32768).
		Note: The addresses calculated in hexadecimal or decimal are the same, and users can choose a familiar calculation method.
 		Communication command. The values and functions are as follows:
		0x0000: disable command :
		0x0001: forward running;
		0x0002: reverse running;
	0x7000	0x0003: forward jog;
		0x0004: reverse jog;
		0x0005: free stop;
		0x0006: decelerating stop;
		0x0007: immediate stop; 0x0008: fault reset;
-		Communication speed given. The unit of this register can be set by P30.14.
		0.01% (-100.00% ~ 100.00%)
	0x7001	0.01Hz (0 ~ 600.00Hz)
Communicatoin		1Rpm (0 ~ 65535Rpm)
special address	0x7002	CommunicationTorque given.0.01% (-300.00% ~ 300.00%)
-	071002	Communication upper frequency given. The unit of this register can be set by
	0x7003	P30.14.
	0000	Different units range same as 0x7001.
-		Torque mode speed limit. The unit of this register can be set by P30.14.
	0x7004	Different units range same as 0x7001.
-	0x7005	Electric torque limit 0.1% (0~300.0%)
-	0x7005	Power generation torque limit 0.1% (0~300.0%)
-	0x7007	PID setting source.0.01% (-100.00% ~ 100.00%)
	0x7007 0x7008	PID feedback source 0.01% (-100.00% ~ 100.00%)
	0x7008 0x7009	VF separation voltage given.0.1% (0~ 100.0%)
-	0x7009 0x700A	External fault setting
	UNIUUA	DO status setting. When the DO function (please refer to P07.01 ~ P07.10)
		is set to 0 (no function), its status comes from the setting of the
	0x700B	communication dedicated register, and the corresponding bit of 1 means it is
		valid. The bits of this register are defined as follows: Bit7 Bit6 Bit7 Bit6
		Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0

						RL2	RL1	DO2	DO1
		Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
								VDO2	VDO1
2) Inverter status:	Read the inverte	er status, s	ee 27 grou	ps of func	tion codes.	,			
3) Inverter fault de	escription: read	the inverte	er fault see	25.00 fun	ction code	(0x1900)			
VFD Fault				D trip inf	rmation				
address			VF	D trip info	ornadon				
	0000 ⋅ no faul	t		0	015. curr	ent detect	ion fault		

	0000: no fault	0015: current detection fault
	0001: SC protection	0016: PG card feedback fault
	0002: overcurrent during acceleration	0017: Encoder zero detection fault
	0003: overcurrent during deceleration	0018: Reserved
	0004: overcurrent at constant speed	0019: overspeed
	0005: overvoltage during acceleration	001A: too large speed deviation
	0006: overvoltage during deceleration	001B: motor auto tuning fault 1
	0007: overvoltage at constant speed	001C: motor auto tuning fault 2
	0008: low voltage fault	001D: motor auto tuning fault 3
0x1900	0009: contactor open	001E: motor auto tuning fault 4
(25.00 function	000A: VFD overload	001F: off load
code)	000B: motor overload	0020: Eeprom read and write fault
	000C: power input phase loss	0021: Reserved
	000D: power output phase loss	0022: Communication time out fault
	000E: IGBT module overheat	0023: extension card fault
	000F: Reserved	0024: PID feedback lost during running
	0010: motor overheat	0025: User-defined fault 1
	0011: fast overcurrent time out fault	0026: User-defined fault 2
	0012: Ground fault	
	0013: motor auto tuning fault reserved	
	0014 : drives temperarure detection	
	fault	

A.7 Register data type

There are several types of register data, and each type of communication setting method is shown in the following table:

Types of register data	Communication setting method
16-bit unsigned	0~65535 corresponds to 0xFFFF; the decimal point does
number	not need to be processed.Example: Set P00.07 to 40.00Hz:
	Write 0x0FA0 to the 0x0007 address.
	-32768~32767 corresponds to 0x8000~0x7FFFF.
16-bit signed number	Example: Set P14.01 to -50.0%:
	Write 0xFE0C to the 0x0E01 address.
	Represents a value of 16 bits.
Binary number	For example, the content of the 0x0600 address is 0x0012,
	which means:Bit1 of r06.00=1, bit4=1; that is, DI1 and DI5
	(HDI) are valid.₀
"One hundred	"Units" ~ "Thousands" correspond to 0~3bit, 4~7bit, 8~11bit,
thousand" type	12~15bit respectively.

	Example: Set the "Unit'digit" of P40.04 to Al1 and "ten's
	digit" to AI2:
	Write 0x0021 to the 0x2804 address.
	The contents of the two registers need to be combined into
	32-bit numbers.
32-bit unsigned	For example, read the meter r16.00:
number	Step 1: Read 2 registers from the starting address 0x1000
	Step 2: Watt-hour meter reading = ((Uint32)0x1001
	value<<16) + 0x1000 value
	Similar to 32-bit unsigned numbers. The value of the even
32-bit signed number	address is still the lower 16 bits, and the value of the next
	address (odd number) of the even address indicates the
	upper 16 bits.

A.8 The inverter acts as a Modbus master

VFD500 can be used as a Modbus master station, it currently only supports broadcast network. When P30.09 is set as 1, master mode can be enabled. The sending frame as master station is as follows:

0x00 0x06 0x70 <u>N</u> <u>ValH</u> <u>ValL</u> CRCL CRCH

Instruction:

- 1. N indicates the slave register of the operation which is set by P30.10.
- 2. Val means the data sent, Val = (ValH << 8) + ValL, the function code P30.11 is to select the contents of the data sent.
- 3. The idle time between frame and frame is set by function code P30.12.

VEIKONG ShenZhen VEIKONG Electric CO., Ltd.

Factory Address: Block E01,first industrical park lingbei 5 road ,phoenix community,fuyong street , Bao'anDistrict, Shenzhen ,China TechnicalSupport Hotline: +86-0755-89587650 Web Site: www.veikong-electric.com